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Abstract 

Bayesian statistical methods are slowly creeping into all fields of science and are becoming ever more 

popular in applied research. Although it is very attractive to use Bayesian statistics, our personal 

experience has led us to believe that naively applying Bayesian methods can be dangerous for at least 

three main reasons: the potential influence of priors, misinterpretation of Bayesian features and 

results, and improper reporting of Bayesian results. To deal with these three points of potential 

danger, we have developed a succinct checklist: the WAMBS-checklist (When to worry and how to 

Avoid the Misuse of Bayesian Statistics). The purpose of the questionnaire is to describe 10 main 

points that should be thoroughly checked when applying Bayesian analysis. We provide an account 

of “when to worry” for each of these issues related to: (a) issues to check before estimating the 

model, (b) issues to check after estimating the model but before interpreting results, (c) 

understanding the influence of priors, and (d) actions to take after interpreting results. To 

accompany these key points of concern, we will present diagnostic tools that can be used in 

conjunction with the development and assessment of a Bayesian model. We also include examples 

of how to interpret results when “problems” in estimation arise, as well as syntax and instructions 

for implementation. Our aim is to stress the importance of openness and transparency of all aspects 

of Bayesian estimation, and it is our hope that the WAMBS questionnaire can aid in this process. 

Key-words: Bayesian estimation; prior; sensitivity analysis; convergence; Bayesian checklist  
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Improving Transparency and Replication in Bayesian Statistics:  

The WAMBS-Checklist 

Bayesian statistical methods are slowly creeping into all fields of science and are becoming ever more 

popular in applied research. Figure 1 displays results from a literature search in Scopus using the 

term “Bayesian estimation” and, as can be seen, the number of empirical peer reviewed papers using 

Bayesian estimation is on the rise. This increase is likely due to recent computational advancements 

and the availability of Bayesian estimation methods in popular software and programming languages 

like WinBUGS and OpenBUGS (Lunn, Thomas, Best & Spiegelhalter, 2000), MlWiN (Browne, 

2009), AMOS (Arbuckle, 2006), Mplus (Muthén & Muthén, 1998-2015), BIEMS (Mulder, Hoijtink, 

and de Leeuw, 2012), JASP (Love et al., 2015), SAS (SAS Institute Inc., 2002-2013), and STATA 

(StataCorp., 2013). Further, there are various packages in the R programming environment (Albert, 

2009) such as STAN (Stan Development Team, 2014) and JAGS (Plummer, 2003) that implement 

Bayesian methods. 

When to use Bayesian Statistics  

There are (at least) four main reasons why one might choose to use Bayesian statistics. First, 

some complex models simply cannot be estimated using conventional statistics (see e.g., Muthén & 

Asparouhov, 2012; Kruschke, 2010, 2011; Wetzels, Matzke, Lee, Rouder, Iverson & Wagenmakers, 

2011). Further, some models (e.g., mixture or multilevel models) require Bayesian methods to 

improve convergence issues (Depaoli & Clifton, 2015; Skrondal & Rabe-Hesketh, 2012), aid in 

model identification (Kim, Suh, Kim, Albanese, & Langer, 2013), and produce more accurate 

parameter estimates (Depaoli, 2013; 2014). Second, many scholars prefer Bayesian statistics because 

they believe population parameters should be viewed as random (see e.g., Dienes, 2011; Van de 

Schoot, Hoijtink, Mulder, Van Aken, Orobio de Castro, Meeus, Romeijn, 2011). Third, with 
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Bayesian statistics one can incorporate (un)certainty about a parameter and update this knowledge 

through the prior distribution. Fourth, Bayesian statistics is not based on large samples (i.e., the 

central limit theorem) and hence may produce reasonable results even with small to moderate 

sample sizes, especially when strong and defensible prior knowledge is available (Depaoli & Scott, in 

press; Hox, van de Schoot, & Matthijsse, 2012; Moore et al., 2015; van de Schoot, Broere, Perryck, 

Zondervan-Zwijnenburg, & van Loey, 2015; Zhang, Hamagami, Wang, & Nesselroade, 2007).  

For a full introduction to Bayesian modeling, we refer the novice reader to, among many 

others: Bolstad (2007); Carlin and Louis (2009); Christensen, Johnson, Branscum, and Hanson 

(2010); Depaoli and Boyajian, (2014); Gelman and Hill (2007); Kaplan, 2014; Kruschke (2010); 

Jackman (2009); Lynch (2007); Ntzoufras (2009); or van de Schoot and Depaoli (2014). Likewise, a 

more technical introduction can be found in Gelman, Carlin, Stern and Rubin (2004), Lee (2007), or 

Press (2003).1  

Making Decisions when Implementing Bayesian Methods 

Although it is very attractive to use Bayesian statistics, estimating models within this 

framework involves making some nontrivial decisions throughout the estimation process. Likewise, 

these decisions can become increasingly more complex to judge based on the complexity of the 

model being estimated. Our personal experience has also led us to believe that naively applying 

Bayesian methods can be dangerous for three main reasons. First, Bayesian statistics makes use of 

(subjective) background knowledge formalized into a, so-called, prior distribution. The exact 

influence of the prior is often not well understood and priors might have a huge impact on the study 

results, which requires careful consideration we detailed in subsequent sections. Second, akin to 

many elements of frequentist statistics, some Bayesian features can be easily misinterpreted. As is 
                                                 
1 For a comprehensive list of introductory, intermediate, and advanced readings on Bayesian statistics, see the following 
website: http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug_introbayes_ 
sect011.htm. 
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true with any statistical paradigm, misleading inferences can be drawn if results are not interpreted 

precisely. A danger here is that most statistical training, at least in the field of psychology, comes 

from a frequentist approach. In addition, without proper training, it may be that interpretations of 

Bayesian statistics can be confused with those in the frequentist framework. Third, reporting on 

Bayesian statistics follows its own rules since there are elements included in the Bayesian framework 

that are fundamentally different from frequentist settings. Given that Bayes is only slowly increasing 

its presence in the methodological and applied literature, there is not a strong precedence for how to 

report results; this became even more evident when we noted most of the papers we found from 

Scopus cited earlier failed to report each of the 10-points we have deemed important and detailed 

below. These points have been described in Bayesian textbooks and papers implementing Bayesian 

methodology. However, to our knowledge, there is no succinct summary of these important 

diagnostics that appears in a single source.  

We conducted a systematic review on applied Bayesian papers published in psychology (see 

van de Schoot, Ryan, Winter, Zondervan-Zwijenburg, & Depaoli, under review). In this review, we 

discovered that the majority of papers we reviewed (99 empirical Bayesian papers were deemed 

eligible for the review) did not properly report important issues surrounding Bayesian estimation. 

For instance, 55.6% of the papers did not report the hyperparameters specified for the prior, 56.6% 

did not report checking for chain convergence, and 87.9% did not conduct a sensitivity analysis on 

the impact of priors. We address all of these issues here and discuss the importance of being 

completely transparent when reporting Bayesian results. 

To deal with these points of potential danger, we have developed a succinct checklist: the 

WAMBS-checklist (When to worry and how to Avoid the Misuse of Bayesian Statistics), see Figure 

2. The purpose of the Checklist is to describe 10 main points that should be thoroughly examined 
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when applying Bayesian analysis. We provide an account of “when to worry” for each of these issues 

related to: (a) issues to check before estimating the model, (b) issues to check after estimating the 

model but before interpreting results, (c) understanding the influence of priors, and (d) actions to 

take after interpreting results. To accompany these points of concern, we will present diagnostic 

tools that can be used in conjunction with the development and assessment of a Bayesian model. 

Intended Audience, Scope, Outline for the Current Paper, and Limitations 

Intended audience. The intended audience of this paper consists of applied researchers who are 

implementing Bayesian techniques, novice Bayesian users, or PhD students wanting to implement 

Bayes. As a motivating example, take a situation where a PhD student wants to use Bayesian 

methods to solve an applied problem. In this situation, the supervisor is unfamiliar with such 

techniques and cannot be of direct help for diagnosing and solving problems with estimation and 

priors. The current paper can be used as a guide and tutorial for checking and diagnosing 

“problems” with priors as to ensure that the PhD student is proceeding with data analysis 

appropriately, even if the supervisor is unable to help with this process. We do not intend this paper 

to replace formal, proper training in implementing and interpreting Bayesian statistics. Although we 

hope this paper can act as a guide to proper use of these methods, thorough training is essential 

when conducting Bayesian methods. 

One important warning regarding the use of this checklist is that fully addressing the items is 

likely to be a nontrivial task, especially for the novice user of Bayesian methods. For example, some 

of the first stages of the checklist could take several months or more to adequately address. 

However, we believe that the time investment is necessary and that the quality and replicability of 

results are ensured once this Checklist has been properly implemented. 
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Scope of the paper. In order to keep the current paper as general as possible with respect to 

implementing Bayesian methods, there are several concepts that we will be focusing on and several 

that we will not specifically address outside of providing references of additional sources. 

Throughout this paper, due to space considerations, we will assume that the user of these methods is 

estimating one particular model with one set of priors. We are assuming researchers are using any 

general model that implements MCMC (with any sampling method—e.g., Gibbs or Metropolis-

Hastings), where the number of iterations in the chain is known. We are also assuming the 

researcher is implementing user-known or user-specified priors that can be freely altered within the 

software; note that some Bayesian programs do not allow the user to directly altering priors (e.g., the 

JASP and BIEMS programs). 

There are many specialized topics in traditional statistical modeling that are also important to 

address under the Bayesian framework such as Bayesian model fit, missing data, model specification, 

model identification, and parameterization. These specialized topics are beyond the scope of the 

current paper, but we refer the reader to more technical sources such as Gelman et al., (2004) and 

Lee (2007) for details on such topics. Finally, we recognize that a variety of open-source and 

commercial software programs can be used to implement Bayesian methods. To keep this discussion 

as encompassing as possible, we do not focus on any particular software; however, we do at times 

make note of specific features to be aware of in different programs. Supplementary material 

representing work from a variety of software programs is presented online to aid in implementing 

various topics discussed and can be found here: www.sarahdepaoli.com. This material includes a 

variety of resources to aid in implementing the recommendations presented here. We include the 

following types of information separated into 7 Folders of content online: 

 Examples for using 9 different Bayesian software programs (e.g., AMOS, JAGS, JASP, 
BUGS, and STAN, to name a few), 
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 A detailed exercise document walking through the use of the WAMBS checklist, 

 All code, output, and data for the examples provided here, and 

 A step-by-step set of directions for implementing the PSRF convergence diagnostic 
(discussed in Point 8) for assessing sensitivity analysis results. 

Outline of the current paper. The current paper includes 10 main points, comprising the WAMBS-

checklist, to consider when implementing Bayesian statistics. These points are broken down into 

four main categories: (a) To be checked before estimating the model—Point 1; (b) To be checked 

after estimation but before inspecting model results—Points 2-6; (c) Understanding the exact 

influence of the priors—Points 7-9; and (d) Interpretation of model results—Point 10. Within each 

of these main categories, we provide background information necessary for understanding each 

Point listed, and we provide a simple example to show how to fill in the WAMBS-checklist. Next, 

we present the individual Points, where we include a description of the issue, a description of what 

output should be provided to the supervisor for checking this Point, details of when to worry about 

certain outcomes, and guidelines for when a Bayesian expert should be consulted.2 The information 

required from each of these sections can be addressed through the WAMBS-checklist provided in 

Figure 2.  

 In many places throughout the paper, we include small examples illustrating the different 

issues the can arise when applying the Checklist. Many of the examples provided use one of two 

main datasets to highlight issues such as convergence, priors, and sensitivity analysis. The first 

dataset contains longitudinal information on burn victims (see Van Loey, Maas, Faber, & Taal, 2003) 

and was selected because previous work on these data (e.g., Depaoli et al., 2015) showed problems 

in obtaining convergence and stable estimates. The second dataset is from the large-scale Early 

Childhood Longitudinal Study-Kindergarten class (NCES, 2001) database, where we illustrate how 

                                                 
2 We are using the broad term of ‘expert’ here to capture the fact that Bayesian experts come from a variety of sub-
disciplines. For the sake of the current paper, ‘expert’ refers to anyone with ample expertise in Bayesian statistics to 
advise on the current topics being addressed. This group may include statisticians, psychometricians, quantitative 
psychologists, education statisticians, or those with Bayesian expertise from other disciplines. 
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priors can be derived and thoroughly examined. All examples are available in the online material and 

we also provide an example online where a single dataset is used to illustrate the entire Checklist 

from start to finish (see Folder 7 in online material). 

Limitations of the current paper. The Checklist detailed next should be followed precisely in order to 

ensure proper implementation and reporting of Bayesian methods. From a practical point of view, 

using this Checklist will be time-consuming and require a great deal of critical thinking and decision 

making—both of which will improve the quality of the work being presented. However, the 

implementation of this Checklist will not ensure that every aspect of the modeling process has been 

properly conducted. This paper should be viewed as a tool that can be used to improve clarity and 

replication of results when implementing Bayesian methods. It is not our intention to focus the 

paper on early errors that could have been committed—for example, errors in the data collection or 

model-building phase. Of course, it is possible that the incorrect model or set of priors can be 

chosen before the Checklist is addressed. In addition, it is important to recognize that errors at 

earlier stages (e.g., selecting an inappropriate model to estimate) will impact subsequent phases of 

the model estimation process addressed in this Checklist. The current paper should be used in 

conjunction with other tools and knowledge that can help the user avoid errors or mistakes that are 

beyond the scope here. Although the focus of this paper is not about early phases of why the model 

looks the way it does, or if the prior information came from the “proper place”, using this Checklist 

will aid in proper review and dissemination of work because the estimation process will be 

completely transparent.   

Stage 1: To be Checked before Estimating the Model 

Background Information on Priors 
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When specifying priors, it is important to recognize that prior distributions fall into three main 

classes related to the amount of (un)certainty they contribute to the model about a given parameter: 

(1) non-informative priors, (2) weakly-informative priors and (3), informative priors.3 Before describing each of 

these categories, we note that levels of informativeness fall on a continuum and are defined 

subjectively in line with the metric and scale of the particular parameter under study. For example, a 

prior (e.g., Uniform[0,1]) may be quite informative for one parameter (e.g., an intercept for a growth 

model measured on a continuous metric) and quite non-informative for another (e.g., a parameter 

on the probability scale); the level of informativeness is dependent on the scale of the parameter. We 

therefore recommend to use graphs to visualize how well the prior maps onto the scale of the 

parameter; Folder 1 of the Supplementary Material presents examples for doing this. 

First, non-informative priors represent a complete lack of knowledge about the value of the 

parameter being estimated. A non-informative prior is typically denoted by a distribution that places 

an equal probability for each possible value under that distribution. Typically, a non-informative 

prior would be represented by a distribution with a relatively flat density, where the different values 

the parameter can take on have approximately equal likelihood under the distribution. If, for 

example, a continuous intercept for a growth model was being estimated, a non-informative prior 

might be Normal(0,1010)—of course, depending on the scale of the parameter. This prior 

distribution is centered at zero and has a very wide variance of 1010, which provides complete 

ambiguity about the parameter value.  

The next level of informativeness represents a prior distribution that holds some useful 

information, but that does not really influence the final parameter estimate to a large degree. These 

                                                 
3 The term “non-informative prior” refers to the case where researchers supply vague information about the population 
parameter value; the prior is typically defined with a very wide variance (Gill, 2008). Although “non-informative” is one 
term commonly used in the Bayesian literature to describe this type of prior (see e.g., Gelman et al., 2004), other phrases 
such as “diffuse” (see e.g., Gill, 2008), or “flat” (Jeffreys, 1961) are also used to describe this type of prior. We use “non-
informative” and “diffuse” interchangeably in the current paper. 
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prior distributions are referred to as weakly-informative priors. A weakly-informative prior is perhaps 

more useful than a strictly non-informative prior since some information is conveyed within the 

distribution. Essentially, weakly-informative priors do not supply any strict information, but yet are 

still strong enough to avoid inappropriate inferences that can be produced from a non-informative 

prior (Gelman, Jakulin, Pittau, & Su, 2008). Taking the same example of a continuous intercept for a 

growth model, a weakly-informative prior might be Normal(50,15). Perhaps the researcher knows an 

approximate intercept and also knows negative starting points of the growth trajectory are unlikely. 

The mean for this prior is set at 50 and the variance is 15. This distribution still covers a relatively 

wide-range of values, but it is allowing for quite a bit of variation surrounding the center of the 

distribution. In the case of some model parameters, such as a growth model intercept, the researcher 

will have information about the possible range of values for the intercept from basic descriptive 

statistics of the growth data. In this case, the researcher could use that information to help construct 

the weakly-informative prior that covers the range of possible values for the parameter. It may even 

be helpful for the researcher to plot the potential prior on a graph, where the x-axis relates to the 

scale of the parameter. In this case, seeing how the prior maps onto the scale of the parameter could 

be very insightful when constructing the prior. 

The other end of the spectrum includes prior distributions that contain strict numerical 

information that is crucial to the estimation of the model. These priors are often referred to as 

informative prior distributions. Specifically, the hyperparameters for these priors (e.g., the prior mean 

and prior variance) are specified to express particular information reflecting a greater degree of 

certainty about the model parameters being estimated. In the case of our growth model intercept, an 

informative prior could be Normal(50,2). In this case, the researcher implies through the prior that 

the intercept is very close to 50 since the variance is set to such a small value. The information 

embedded in the informative prior can come from a variety of places, which is referred to as prior 
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elicitation (O’Hagan et al., 2006; Van Wesel et al., 2011). Some elicitation strategies include the 

following techniques. First, the researcher can ask an expert, or a panel of experts, to provide an 

estimate for the hyperparameters based on knowledge of the field; see, for example: Bijak and 

Wisniowski (2010); Fransman, et al., (2011); Howard, Maxwell, and Fleming (2000); Martin et al., 

(2012); and Morris, Oakley, and Crowe (2014). Second, the researcher can use the results of a 

previous publication as prior specification (Kaplan, & Depaoli, 2013). Third, they can use the results 

from a meta-analysis to define hyperparameter values for the prior, where multiple studies are 

combined to form information about the parameter (Ibrahim, Chen, & Sinha, 2000; Rietbergen et 

al., 2011). Fourth, a pilot study can be used with the same population of interest and a sampling 

method can be implemented to obtain an estimate for the parameter that can then be used to define 

a prior for a subsequent data set (Gelman, Bois, & Jiang, 1996). Finally, data-based priors can be 

derived based on a variety of methods including maximum likelihood (see, Berger, 2006, Brown, 

2008, Candel & Winkens, 2003, van der Linden, 2008) or sample statistics (see e.g., Darnieder, 2011; 

Raftery, 1996; Richardson & Green, 1997; Wasserman, 2000). Note that there are some arguments 

against using such “double-dipping” procedures where the sample data are used to derive priors and 

then used in estimation; we refer the reader to Darnieder (2011) for more details on this topic. 

Much research has indicated that priors can have an impact on parameter estimates and 

therefore also on substantive findings; for details on the different ways in which priors can adversely 

impact findings, see: Depaoli (2013); Gelman and Shalizi (2013); Johnson (2013); Seaman, Seaman, 

and Stamey (2012); and van de Schoot and Depaoli (2014). Moreover, whether the priors typically 

used as non-informative (or informative) priors are actually acting as non-informative (versus 

informative) priors has not been fully examined in the methodological literature. There is reason to 

believe that such supposedly non-informative priors may in fact be acting in an expectedly 

informative way. For example, a prior specification that is truly non-informative may have an 
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adverse impact on final parameter estimates via the posterior, especially when sample sizes are small; 

see Lambert, Sutton, Burton, Abrams, and Jones (2005) for a meta-analytic example of this. 

Alternatively, a prior that is meant to be non-informative but is actually acting as informative can 

have unintended effects on the posterior (see, Gelman, 2006). For example, a Dirichlet prior of 

D(10,10) for a 2-class mixture model can distort the posterior and push the classes to be equal in 

size even if they are far from equal (Depaoli, 2013); note that this is the default “non-informative” 

prior in Mplus. Likewise, diffuse or non-informative priors can have an adverse impact on 

parameters that are transformed. Specifically, Seaman, Seaman, and Stamey (2012) showed that 

diffuse (non-informative) priors used in logistic regression actually acted as informative priors once 

the logit transformation was computed. The result was that the diffuse priors had an unintended 

impact on the posterior of the transformed parameters, which were the parameters ultimately 

interpreted in the model. As a result of the impact that even “default” diffuse priors can have, it is 

important to indicate and justify when default univariate priors are implemented in the data analysis 

process.4 

Given that priors in general may have a rather large impact on final estimates, especially when 

sample sizes are small, it is important to understand the priors used in the model under investigation. 

That is, if a researcher specifies prior distributions, the results are affected by the subjective choices 

a researcher makes. The question is how much the results are influenced and whether the influence 

is wanted or unwanted. If a researcher uses Bayesian estimation without exactly understanding the 

role of the prior distribution, then the results and conclusions (!) might be impacted in a manner that 

makes them invalid. Therefore, priors can be dangerous and researchers should always convince 

their supervisors, the editor, and the reviewers the impact that the prior is having on the final 

conclusions. When using our diagnostic tool, the exact effect of the priors on the results can be 

                                                 
4 Additional information will be provided in a subsequent section about common, default multivariate priors for 
covariance matrices. 
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uncovered, as well as whether the influence of the prior is wanted or unwanted. In conclusion, the 

first point of our diagnostic tool seems rather intuitive and simple, but the importance of 

understanding your priors cannot be stressed enough given the potential impact that it may have on 

conclusions.  

Point 1: Do you understand the priors? 

Item description. In order to convey your understanding of your prior, you must address five different 

points. First, one needs to specify the distributional form of the priors (e.g., normal, inverse gamma, 

etc)5. For a list of possible types of priors, see Appendix A on page 573-577 in Gelman et al. (2004). 

Second, the researcher must decide whether they will use conventional or “default” priors, which we 

also refer to as non-informative in this paper.6 This distinction in the type of prior is rooted in 

whether Bayesian estimation is used as a method that incorporates previous knowledge into the 

estimation process (via weakly or informative priors) or simply as just another estimator (via non-

informative priors); for a discussion on this topic, see Press (2003). Third, if weakly-informative or 

informative priors are used, then the researcher must include information about where the 

background knowledge used to form the prior came from, see O’Hagan et al. (2006) for more details 

on prior elicitation. Fourth, the researcher must include visual plots depicting weakly-informative 

and informative priors. Plotting priors can help to visually detect levels of informativeness. Many 

programs such as Mplus, Amos, the R programing environment, and many online web tools can be 

used to plot priors—including the code we provide in the online Supplementary Material in Folder 

                                                 
5 First, the researcher must select the distributional family and then, within the family, the specific form of the 
distribution is selected. 
6 We also note that the researcher will need to decide whether conjugate priors (those of the same parametric form as 
the posterior) are used or not. Conjugate priors are convenient for interpretation since the posterior will follow a known 
distribution form (Gelman et at., 2004; Gill, 2008). Although computational advances no longer require the need for 
conjugate priors, some models (e.g., finite mixture models) require them to speed up mixing time and aid in proper 
convergence. This topic of conjugacy is largely beyond the scope of this paper, but we refer the reader to Gelman et al. 
(2004) and Gill (2008) for more details about conjugate priors. 
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2. Fifth, specific hyperparameter values must be determined and reported for all priors. This final 

request is perhaps the most difficult because it is tied to the issue of prior elicitation so it is 

important to be meticulous and thorough when determining hyperparameter values. 

What to show to your supervisor. Table 1 provides an example of how to summarize these five points. 

Perhaps the most important portion of this table is where the information used to determine the 

hyperparameters came from. This information is especially important to cover with one’s supervisor 

to ensure that the correct source of information was used to construct the prior. If the user is unsure 

of how to solicit or specify a certain prior, then the supervisor should be consulted during the prior-

specification phase as well. 

When to worry. Worry if you cannot fill in all of the information for Table 1. 

When to ask an expert. If after going through these recommendations, reading the literature, talking to 

the supervisor, and following a Bayesian course the researcher still has questions about the elicitation 

process, then an expert can be consulted to help. 

Stage 2: To be Checked after Estimation but Before Inspecting Model Results 

Background Information on Convergence  

All textbooks introducing Bayesian statistics caution users to always inspect the trace plots 

(Bolstad, 2007; Carlin & Louis, 2009; Christensen, Johnson, Branscum, Hanson, 2010; Gelman, 

Carlin, Stern & Rubin, 2004; Gelman & Hill, 2007; Jackman, 2009; Lynch, 2007; Ntzoufras, 2009). 

This section is about the importance of these plots and how to assess them. After specifying the 

prior distribution and entering the data into the software, the posterior distribution needs to be 

obtained. To approximate the posterior, often the Gibbs sampler is used; although, other samplers 
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can also be implemented here.7 The idea behind the Gibbs sampler is that the conditional 

distribution of one set of parameters given other sets can be used to make random draws of 

parameter values (see for more information about the Gibbs sampler: Geman and Geman, 1984; 

Casella & George, 1992). This process results in an approximation of the joint distribution of all the 

parameters. The Gibbs sampler consists of t iterations (t = 1, …, T) to obtain new values in each 

step drawing from a conditional posterior parameter distribution. Typically, a large number of 

iterations are performed to construct the posterior distribution. If we plot the estimates of all 

iterations after burn-in (the iterations discarded before convergence is obtained), then a histogram is 

obtained. It is typically desired to visually depict the samples pulled from the posterior, and the 

histogram or a Kernel density plot can be used to visually represent the samples. 

Before inspecting the Kernel density plot there is one issue of high importance: namely, 

convergence of the trace plot. As previously mentioned, after running enough iterations, the Gibbs 

sampler converges to the posterior distribution of interest. Theoretical results imply that the Gibbs 

sampler always converges if run long enough. The solution to when convergence is not met, 

however, is simple providing proper specification of the model: use more iterations and only use 

that part of the chain which has reached convergence. However, the question is how many iterations 

to use and as such, how to determine convergence of our statistical chains?  

The decision of whether a chain has converged can be based on statistical criteria, but should 

always be accompanied by a visual inspection of the trace-plot, as will become clear below. Although 

Sinharay (2004) and others (see e.g., Brooks and Roberts, 1998) discuss several diagnostic tools to 

determine convergence, there is no consensus which statistical criterion can be considered as the 

‘best’ one. Much of this lack of consensus is due to the fact that the various convergence criteria 

                                                 
7 We generalize to the Gibbs sampler here, but the same issues we discuss will arise with other samplers. In turn, the 
same solutions we suggest can also be implemented. 
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focus on different aspects of chain convergence; it is much more difficult to assess convergence in 

distribution than convergence to a particular number (akin to maximum likelihood via the EM 

algorithm). However, it is also important to note that convergence is still equally important and 

sometimes difficult to assess for maximum likelihood estimation. 

To determine whether the algorithm has converged, one should check the stability of the 

generated parameter values. A visual check of the stability of the generated parameter values implies 

estimating multiple chains (when possible), where each chain starts at a disparate place in the 

parameter space. Then the researcher should visually observe from which iteration onwards the 

generated parameter values display a stable pattern in the mean and in the variance of the parameter 

across chains (i.e., the mean of the chain is stable and the variance, or fluctuations in the chain is 

stable). Note that this visual check should be carried out for each and every estimated parameter, 

even if the parameter is not of particular substantive interest. 

It is important to note that there are several other commonly implemented convergence 

diagnostics in programs such as Mplus and R; for example, the Geweke diagnostic (Geweke, 1992), 

the Heidelberger and Welch diagnostic (Heidelberger & Welch, 1983), and the Raftery and Lewis 

diagnostic for determining the length of the burn-in and post-burn-in portions of the chain (Raftery 

& Lewis, 1992). The interested reader is referred to Kaplan and Depaoli (2012), Sinharay (2004), or 

Kim and Bolt (2007) for an overview of additional convergence diagnostics commonly implemented 

in the Bayesian literature. At times, we will also suggest implementing some of these techniques to 

satisfy the Checklist. 

Point 2: Does the trace-plot exhibit convergence? 

Item description. For each parameter estimated in the model, extract the trace plot and put it in Table 

2, column 2. For each trace plot, one must visually inspect chain convergence (i.e., the mean and the 
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variance of the chain show stability). If the visual inspection does not show chain convergence, then 

run more iterations and increase the burn-in phase. The number of iterations should be increased 

until all of the parameters in the model show visual convergence in the trace plots. If the number of 

iterations has been increased and convergence still has not been obtained, then perhaps there are still 

not enough iterations. We recommend having at least 10,000 iterations in the burn-in phase and 

10,000 iterations in the post burin-in phase, but some complex models (e.g., multilevel or mixture 

models) may require up to 500,000 or one million iterations in the burn-in phase. These are very 

rough guidelines, but our point is that the researcher should be open to the idea that the chain 

length necessary to converge (i.e., one with a stable mean and stable variance) may be very long.8 

Most of the time, non-convergence can be remedied by increasing the length of the chain. However, 

if running the chain for a large number of iterations does not yield convergence, then consider 

changing starting values or altering the model. Mathematically, every model will converge to the 

target distribution, and if convergence is not obtained after going through these recommendations 

then there may be another issue causing problems (e.g., model mis-specification or a model that is 

not identified). 

What to show to your supervisor. Show the supervisor Table 2, column 2 with converged trace plots for 

every parameter in the model. It may be that in order to fill in this table with converged trace plots 

for every parameter that you will have to rerun the model several times using different lengths of 

burn-in and post burn-in portions of the chain to obtain visual convergence for every parameter. 

When to worry. Worry if at least one trace plot does not show convergence after implementing the 

suggestions listed above.  

                                                 
8 If a very large number of iterations are required, and this number is unreasonable to compute, then the researcher may 
consider using a different estimation algorithm or Bayesian program to help speed computation time. 
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When to ask an expert. If substantially increasing the number of iterations (e.g., up to two million 

iterations) does not solve the issue, then an expert should be consulted.9  

Point 3: Does convergence remain after doubling the number of iterations?  

Item description. Once visual convergence appears to have been established through the trace plots, a 

second check of convergence is necessary using: (1) another visual check, (2) a convergence 

diagnostic, and (3) computation of relative deviation. This second check is specifically to avoid 

obtaining what we call local convergence. Local convergence can be thought of as the case where 

convergence appears to be visually obtained—often with a smaller number of iterations—but when 

the chain is left to run longer, then the chain shifts and converges to another location.  

In order to check for local convergence, rerun the model with twice the number of 

iterations. As an example, see Table 3, where we show results for two different chains. Example data 

used to illustrate this point were based on a reanalysis of longitudinal data presented in Van Loey, 

Maas, Faber, and Taal (2003). Specifically, we estimated a 4-class Bayesian latent growth mixture 

model examining different trajectories representing posttraumatic stress disorder (PTSD) changes 

over the course of a year following a traumatic burn event. Initial model estimation using 6,000 total 

iterations in the chain, and the first half discarded as burn-in, indicated model convergence via 

convergence diagnostics and visual inspection.10 However, upon extending the length of the chain, 

we found that local convergence had actually been obtained. Table 3 shows an example of the mean 

of the slope for the first latent class. Once extending the chain out substantially to 50,000 iterations 

                                                 
9 The number of iterations is not of direct concern as long as convergence has been obtained. There are many features 
that can result in needing a larger number of iterations such as poor starting values, complex statistical models (e.g., 
multilevel or mixture), and the sampler implemented in the MCMC estimation algorithm. 
10 Note that this shorter chain does appear to display patterns associated with large autocorrelation. Large degrees of 
autocorrelation can typically be viewed in the chain as patterns showing systematic deviations from the mean (or other 
central tendency measure) of the chain. It is also likely that this portion of the chain does not reflect convergence given 
the results and the context of the model parameter. However, the purpose of this example was to illustrate what local 
convergence might look like. It can be seen through the longer chain displayed in Table 3 that convergence was obtained 
once lengthening the chain substantially. 
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(first half discarded as burn-in), we can see that the chain stabilized in a different area of the 

parameter space. In this case, the shorter and longer chains both exhibited convergence based on 

convergence diagnostics. However, despite the convergence diagnostics indicating the chain was 

stable, it is clear that local convergence was initially obtained under 6,000 iterations. Supplementary 

documents for this example can be found in the online material in Folder 4. 

 We recommend assessing for local convergence using some additional criteria. Specifically, 

convergence diagnostics can be used to help establish convergence, and next relative deviation can 

be computed to assess potential differences after extending the length of the chain. We also discuss 

cases where cumulative average plots can aid in diagnosing convergence problems and when 

multiple chains should be used in the estimation process.  

 One convergence diagnostic test that can be incorporated here is the Geweke diagnostic 

(Geweke, 1992); note that there are others that can also be used, but Geweke can be used to 

specifically compare the running mean of two chains to identify potential differences (Smith, 2005). 

After doubling the number of iterations, the Geweke convergence diagnostic can be implemented to 

see how stable the full length of the chain is. The Geweke diagnostic uses a z-test for the first and 

last portions of a chain. If the z-test yields a significant test statistic, then the two portions of the 

chain significantly differ and full chain convergence was not obtained. To test local convergence, the 

Geweke convergence diagnostic can be used on the first half and last half of the chain. If the z-

statistic rejects, then the two portions of the chain are assumed to be significantly different from one 

another. In this case, one can conclude that local convergence was an issue and a longer burn-in 

phase is likely necessary. This process should be repeated until Geweke indicates that local 

convergence was not an issue via a non-significant z-statistic. Implementing the Geweke 

convergence diagnostic is rather straightforward using the BOA (Bayesian Output Analysis) package 
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in R (Smith, 2005). Specifically, one would save out the CODA files (from BUGS or akin) and then 

read these files into the BOA package in R. A guide for implementing diagnostics in BOA can be 

found in the online Supplementary Material in Folder 6.  

Another approach that can be taken here, which addresses a similar issue as the Geweke 

diagnostic, is to compute a relative deviation score between the estimates. Both of these approaches 

(the Geweke and the relative deviation computation) address similar inquiries (i.e., whether the 

estimate is stable and convergence has been obtained), but they yield slightly different 

interpretations. In the case of the relative deviation, some information about the magnitude of the 

scale for the parameter is being retained whereas this is not the case with the Geweke diagnostic. 

However, both approaches are meant to assess whether convergence can be assumed with the 

number of iterations specified in the chain. 

The relative deviation can be computed between the estimates obtained during the converged 

result obtained for the initial model (Analysis 1) and the model where the number of iterations was 

doubled (Analysis 2); this relative deviation should be computed for each parameter in the model. 

Computing relative deviation will provide information about the fluctuations in the estimates across 

both chains. The researcher can then substantively interpret any fluctuations observed in the chains. 

The formula for computing relative deviation for each model parameter is: Relative deviation (in 

percent) = [(initial converged analysis – analysis with double iterations)/initial converged 

analysis]*100. The researcher should then use substantive knowledge about the metric of the 

parameter of interest, as well as substantive interpretations of the amount of fluctuation exhibited 

between chains, to determine when levels of relative deviation are negligible or problematic. For 

example, with a regression coefficient of 0.001, a 10% relative deviation level might not be 

substantively relevant. However, with an intercept growth parameter of 50, a 10% relative deviation 
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level might be quite meaningful. The specific level of relative deviation should be interpreted in the 

substantive context of the model. Some examples of interpretations are:  

if relative deviation is < |1|%, then do not worry; 

if relative deviation > |1|%, then rerun with 4-times and compare (called Analysis 3). 

Compare results from Analysis 2 and Analysis 3 by computing relative deviation. 

By providing these examples of interpretation, we are not trying to present a new “rule” for 

interpreting relative deviation. Rather, we use this as a guideline for researchers to interpret findings. 

Another option that researchers can use here is to look at a cumulative average plot for the mean of 

the posterior. This type of plot would be able to detect if the mean of the posterior was not 

consistent and stable throughout the post burn-in iterations.  

Finally, it is also the case that a single Markov chain may not be able to expose all issues with 

convergence. Specifically, in a context where a distribution has multiple modes, a single chain may 

not be able to adequately display this information. As a result, we would recommend researchers to 

implement multiple chains (e.g., at least 2) for a given model parameter to explore the possibility of 

multiple modes existing in the posterior. The main point is to assess whether fluctuations in the 

chains impact the results. Thus, critical thinking about what dictates a substantive fluctuation is 

necessary. 

What to show to your supervisor. A model where all chains have passed the visual check, the Geweke 

convergence diagnostic test, relative deviation levels that are considered to be substantively 

negligible or a stable cumulative average plot, and the first portion of Table 4 related to Point 3, 

which captures relative deviation and Geweke inforamtion for each model parameter. Note that 
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results for relative deviation and the Geweke diagnostic will likely coincide given that the Geweke 

diagnostic uses the mean of different fractions of the chain to assess convergence. 

When to worry. If after doubling and perhaps rerunning the model with 4-times the number of 

iterations, results are still not comparable (e.g., if relative deviation results indicate substantial 

substantive fluctuations, or if the Geweke convergence diagnostic test statistic is still significant), 

then worry. 

When to ask an expert. If problems exist after changing starting values, double-checking model 

specification and checking the literature to see if default priors implemented should have been 

altered, then consult an expert. Note that at this point, the subjective priors should not be changed, 

assuming that Point 1 was implemented properly, but the expert can help identify other potential 

issues that may be creating a problem.  

Point 4: Does the histogram have enough information? 

Item description. The amount of information, or smoothness, of the histogram should be checked 

visually for each model parameter. The purpose of this Point, as well as Point 5, is to ensure that the 

samples pulled from the posterior are ample enough and adequate representations of the posterior 

distribution. Notice that the plots for our simple example show histograms with no gaps or other 

abnormalities, see Table 2 column 3. This level of information is desired for histograms. 

Alternatively, we see a variety of plots in Figure 3, which represent histograms from the estimated 

chain. Looking at the histograms, rather than the smoothed densities, is important in order to assess 

whether there were “enough” iterations in the chain to approximate the posterior. We need to 

ensure that there was enough samples drawn in the chain in order to properly reconstruct the 

posterior. In Figure 3, we can see that plots (a) and (b) clearly do not display a smoothed and precise 

histogram. In both of these cases, more samples should be drawn to ensure that there is “enough” 
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information to fully capture various features of the posterior (e.g., central tendency and variation of 

the posterior). In contrast, plot (c) is showing more information, and finally plot (d) illustrates a 

histogram with enough information to approximate the mean and variance of the posterior. We can 

confidently draw substantive conclusions about the shape of plot (d).  

The practical issue here is how to make the decision that “enough” information is 

incorporated into the posterior. Much of this decision is subjective and directly tied to the point at 

which the researcher feels the posterior is substantively interpretable (e.g., the mean and variance 

can be derived and interpreted with confidence by the researcher). With computationally complex 

models, this decision is likely going to be a trade-off between computational time and the amount of 

information gathered for the parameter estimates. If computation time is incredibly long, then we 

recommend running the chain until the level of information included in the histogram makes 

substantive sense and can be interpreted; of course, this is a subjective judgment call. We also note 

that the shape and smoothness of a histogram is linked to the number of bins used to create the 

plot. If too few bins are used, then some information may be lost and it would be more difficult to 

establish whether or not there is “enough” information in the chain. An objective check that can be 

done in this situation is to re-estimate the model with different starting values and compute the size 

of the effect between estimates to ensure results are stable. If the difference in estimates is 

substantively irrelevant between the two sets of starting values, then results are likely stable. The 

main point here is that enough samples have been compiled to form the posterior such that 

substantive conclusions can be appropriately drawn.  

What to show to your supervisor. Histograms with a high level of information and column 3 of Table 2. 

When to worry. Worry if a smooth histogram is not obtained for each parameter. 
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When to ask an expert. There is no direct need to consult an expert, but the number of iterations 

should be increased until smoothness in the histograms is obtained. 

Point 5: Do the chains exhibit a strong degree of autocorrelation? 

Item description. The very nature of a Markov chain is that the iterations in the chain are dependent on 

one another, and this dependency is captured by the amount of autocorrelation present in a chain. 

To remove (or decrease) the amount of autocorrelation in the chain, some researchers will use a 

process called thinning, where every t-th sample (t > 1) is selected to form the post burn-in samples in 

order to lessen the dependency in the posterior. It is important to stress that thinning is not a 

necessary component for obtaining convergence since convergence can still be obtained with 

dependent samples, providing a long enough chain is specified. In fact, thinning is typically not 

viewed as optimal because of the impact it can have on sample variance estimates for parameters 

(Geyer, 1991; Link & Eaton, 2011). Specifically, when a chain is thinned, sample variance estimates 

from the iterations must be down-weighted to account for larger lags (or higher thinning intervals) 

in order to produce a decent variance estimate. 

Even though we do not recommend thinning in general, high degrees of autocorrelation can 

be indicative of other problems with the model estimation process that should be addressed. For 

example, high autocorrelation can be a sign that there was a problem with the functioning of the 

MCMC sampling algorithm or in the initial setup of the model. If convergence is also not obtained 

with an extreme number of iterations, then these issues can be indicative of a model specification 

problem. In these cases, the validity of the model results can be questionable. As a result, the cause 

of autocorrelation should always be investigated in order to determine if other features (e.g., the 

sampling algorithm or structure of the model) need modification to obtain valid results. Researchers 

should always examine autocorrelation plots for the model parameters. If the chains have high levels 
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of dependency, but convergence was obtained and the model was estimated properly otherwise, 

then autocorrelation can be ignored. However, if the patterns of autocorrelation suggest other 

estimation problems, or problems with the specification of the model, then model modification may 

be necessary. 

What to show your supervisor. Autocorrelation plots for all parameters as seen in Table 2, column 4. 

When to worry. It depends. If there is natural dependency among samples in the chain that is left 

unaccounted for in the model, then a longer chain is generally needed before convergence is 

achieved. Whenever possible, the source(s) of natural dependency should be incorporated into the 

model. Convergence will be obtained with a long enough chain, and the amount of autocorrelation 

present is not a problem for interpretation of results as long as convergence was obtained. However, 

if the dependency among samples in a chain seems overly excessive, or shows strange patterns when 

comparing across similar types of parameters in the model, then the sampling algorithm or the 

specification of the model may need to be modified.  

When to ask an expert. If the autocorrelation plots suggest there may be a problem with the sampling 

algorithm (e.g., some parameters are showing rather excessive autocorrelation, thus requiring much 

longer mixing times), then an expert can be consulted to help determine whether an alternative 

sampling algorithm might be necessary. 

Point 6: Does the posterior distribution make substantive sense? 

Item description. Substantive abnormalities in the posterior distribution should be examined (e.g., 

through Kernel density plots). The main things that should be checked in a posterior distribution are 

that it: is smooth, makes substantive sense, does not have a posterior standard deviation that is 

greater than the scale of the original parameter, does not have a range of the posterior credible 
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interval greater than the underlying scale of the original parameter, and does not show great 

fluctuations in the variance of the posterior.  

What to show to your supervisor. Posterior distributions that are smooth and make substantive sense, and 

column 5 of Table 2 should also be filled out. 

When to worry. Worry if the posterior does not make sense substantively. 

When to ask an expert. If the results show convergence in Points 2-6 but the posterior does not make 

sense substantively, talk to your supervisor and go into the literature to find out if there is an 

alternative substantive justification for these findings. If these recommendations fail, then see an 

expert.  

Stage 3: Understanding the Exact Influence of the Priors 

For cases where only non-informative or default-setting priors are used, Points 7-9 can be skipped. 

However, if (weakly) informative priors were implemented for any model parameters, then points 7-

9 should be addressed. 

Warning: It is imperative that decisions made during Points 7-9 are presented in a completely 

transparent manner. If Points 7-9 indicate that results from the sensitivity analysis are problematic 

(e.g., some parameters are extremely sensitive to the prior specification), then any changes made to 

the model or priors should be presented in a completely clear way and the Checklist should be 

started over with the model that incorporates any changes made.  

Although this next section recommends playing around with some of the prior settings, it is 

important to note that this is an exercise to improve the understanding of the prior specified in 

Point 1 and not a method for changing the original prior and continuing forward. There are several 
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dangers of adjusting priors at this stage of the process. This issue is related to questionable research 

practices. For example, if a researcher changes the prior after seeing results of Points 7-9, then this 

can be considered as manipulating the results. Further, priors can be altered to influence results in 

whatever way the researcher wants. Finally, if the original priors are updated after seeing the results 

of Points 7-9 and the new prior is implemented with the same data, then it is the considered double-

use of the data. All three of these examples are highly discouraged and may even be considered 

violating the moral integrity of science. Specific to Bayesian work, openness and transparency in the 

selection of priors is imperative for this reason.  

If Points 7-9 indicate instability of results through a sensitivity analysis (e.g., a parameter is 

particularly sensitive to prior settings), then it is possible that the model was mis-specified or the 

parameters are not fully identified by the data or model. In this case, researchers should consider 

making the necessary changes to the model to combat any identification or mis-specificaiton issues. 

However, once any changes have been made, the process of implementing the Checklist should start 

over from the beginning. The following points are designed to help researchers better understand 

Bayesian results and understand the impact of the priors selected in Point 1 above.  

Point 7: Do different specifications of the multivariate variance priors influence the results? 

The information provided for Point 7 is decidedly more technical than the other points presented 

here. Handling a multivariate variance prior has technical complexities that are often not elaborated 

upon in applied Bayesian papers, but some severe issues can arise if this prior is not specified 

properly. Although it is true that univariate priors used for variances (or standard 

deviations/precisions) have some similar complexities (see e.g., van de Schoot et al., 2015), we 

highlight some of the issues specific to the multivariate treatment of these priors. In our experience, 

the multivariate priors used in this situation can be quite difficult to navigate and require detailed 
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consideration during implementation. It is our aim in this section to describe some of these 

complexities in order to introduce researchers to this multivariate prior, describe some of the 

problems that can arise, and provide guidance for handling this type of prior.  

Background information. Just as with Point 1 and the univariate model priors, it is also important to 

understand your multivariate prior for a covariance matrix. A multivariate prior such as this would 

be placed on the matrix of variances and covariances. In cases where data are distributed 

multivariate normal (MVN), the data distribution can be written as MVN([μY1, μY2], Σ), where Σ (the 

covariance matrix) is commonly specified as following an inverse Wishart distribution (IW). The IW 

distribution is perhaps the most common prior specification for covariance matrices. There are two 

hyperparameters for the IW distribution such that Σ ~ IW(Ω, d), where Ω is a positive definite scale 

matrix and d is an integer representing the degrees of freedom for the IW distribution. The integer d 

can vary depending on the informativeness of the prior distribution. 

Overall, the Wishart family of multivariate priors is important to handle properly. There 

have been many comments published on the optimal specification of the (inverse) Wishart prior. 

Specifically, by O’Malley and Zaslavsky (2005) and subsequently Gelman and Hill (2007) have 

recommended using a scaled inverse-Wishart prior, where the covariance matrix is broken up into a 

diagonal matrix of scale parameters and an un-scaled covariance matrix which is then given the prior 

(for additional details see Gelman, 2006, September 1). The exact specification of the Wishart prior 

has also been found to have a large impact when variances  (diagonal elements) in the covariance 

matrix are small (Schuurman, Grasman, & Hamaker, in press). It is especially important to assess 

hyperparameters for the multivariate prior through a sensitivity analysis in order to examine the 

potential impact of the prior. For example, as a preliminary analysis Depaoli (2012) conducted a 

sensitivity analysis for the IW prior in the context of a mixture confirmatory factor analysis model 
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and found that even slightly modifying the hyperparameters of the IW changed final estimates 

substantially.  

Given the complexity of the (inverse) Wishart prior, our advice is twofold. First, the default 

settings for the prior can be specified to ensure that the prior is properly specified according to a 

multivariate probability distribution. Second, if the default settings are changed for the (inverse) 

Wishart prior, then we recommend consulting an expert to ensure that the prior is positive definite 

and that it will perform properly during estimation. Note that the practitioner may still choose to 

consult with an expert, even if the default settings are used. The complexity of this prior often 

warrants careful consideration. 

Item description. The action to take in order to examine the impact of this multivariate prior is to 

always assess an alternative setting for the prior and compare structural and measurement model 

results to the original default setting results obtained in previous stages. There are three 

specifications of the inverse Wishart (IW) that are discussed as non-informative in Asparouhov and 

Muthén (2010, page 35). The first specification is IW(0, -p-1) for covariance matrices, where p is the 

dimension of the covariance matrix, and mimics a uniform prior bounded at (-∞,∞). The second 

specification is IW(0,0). The last specification discussed is IW(I, p+1), where this prior mimics the 

case where off-diagonal elements (covariances) of the covariance matrix would have uniform priors 

bounded at [-1,1] and diagonal elements (variances or residual variances) distributed as IG(1,.5), 

where IG represents the inverse gamma distribution. Once a second specification of the IW is 

implemented, then the effect of the prior should be computed between the two IW specifications.11 

In order to compute this effect, one can use the following formula for the parameter estimates: 

                                                 
11 Here we use the terminology of “effect of the prior” rather than the term “bias”, which is commonly used in 
comparable frequentist settings. Within the Bayesian framework, “bias” does not take on the same meaning since bias 
that is directly related to priors will diminish and disappear under large sample sizes given that the impact of the prior 
will also diminish (Gelman et al., 1996). As a result, we refer to differences between prior settings as “effects”. 
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Effect of the prior (in terms of % difference) = [(initial prior specification – subsequent prior 

specification)/initial prior specification]*100. We present an example in Table 4.12 

What to show to your supervisor. The size of the effect for all model parameters between the first and 

second specifications of the IW prior should be provided see Table 4, column 2 (section ii). 

When to worry. When the size of the effect between the two IW specifications are substantively 

meaningful (e.g.,  > |1|% for any measurement or structural model parameter), then worry about 

the impact of the IW prior. 

When to ask an expert. If the technical details related to this section are confusing, or anytime the size 

of the effects are substantively meaningful (e.g., >|1|%). 

Point 8: Is there a notable effect of the prior when compared with non-informative priors? 

Item description. In order to understand the impact that the subjective (i.e., weakly-informative or 

informative) prior is having on model results, we recommend that comparisons be made between 

subjective and non-informative priors. Specifically, this Point involves estimating the model with all 

non-informative priors and comparing results via the size of the effect of the subjective prior as 

defined in Point 1. This Point is simply to understand the subjectivity of the prior and can aid in the 

discussion of the prior impact. We note here that priors will impact different parameters in different 

ways. For example, mean structure parameters are less sensitive to priors, but parameters in more 

complex models may be more sensitive (e.g., latent variable models, mixture class models, or 

multilevel models). 

                                                 
12 We have also included a column in Table 4 corresponding to the PSRF convergence diagnostic. We expand on using 
this statistic in the next section. 
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If the size of the effect is relatively small (e.g., less than |1|%) and the substantive 

conclusion remains the same, then the subjectivity embedded into the prior has no impact.13 The 

researcher should continue to use informative priors but recognize their limited impact in the 

discussion. If the size of the effect is moderate (e.g., |1-10|%) and the substantive results are the 

same, then the subjectivity of the prior may have had a moderate impact on final results. However, if 

the size of the effect is moderate (e.g., |1-10|%) and the substantive results differ, then the 

subjectivity of the prior had a large impact. If the size of the effect is large (e.g., greater than |10|%) 

or substantive interpretations are different, then the subjectivity of the prior had a large impact on 

results. Although we have supplied some example cutoffs here, we recognize that relative deviation 

levels, or sizes of effects, are largely interpreted in the substantive context of the metric of the 

parameters being examined. Therefore, we are not attempting to create new rules of thumb that 

span across all research scenarios. Rather, this section should be meant as a guide for interpreting 

one’s own results.  

Another method that can be used to examine the similarity of results obtained across models 

with two sets of priors specified is to use the Gelman and Rubin (1992a;b) convergence diagnostic. 

This diagnostic produces something called a potential scale reduction factor (PSRF). If this factor is 

near 1.0, within some preset bound, then two chains are said to have converged. Typically this 

method is used to examine convergence between two chains in the same model. However, we 

propose a novel use of the PSRF where two equal-length chains from separate analyses (e.g., one 

model with two sets of priors) are compared. If the PSRF is quite large, then this is another 

                                                 
13 The size of the effect for a parameter using a percent relative deviation computation can be computed using the 
following formula: [(model with initial subjective parameter) – (model with non-informative prior)/(model with initial 
subjective parameter)]*100. The estimates for each model would be embedded into this equation and the size of the 
effect is produced. The relative size of this effect should be interpreted in the context of what is substantively 
meaningful (i.e., 5% might represent a large effect in one context and a very small effect in another context). In the case 
of our reference to specific cut-off values (e.g., 1%), our intention was to present an example of a negligible difference 
between effects. However, results should always be interpreted in the context of the particular model and parameters 
being investigation. 
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indication that the results obtained from the different prior settings may be substantively different. 

This finding could point toward the prior having a meaningful impact on results, which should be 

thoroughly described in the discussion section of a paper. For an example of implementing the 

PSRF in this novel manner, please refer to online Supplementary Material in Folder 6. Next, we 

provide an example of interpreting such findings. 

As an example, we pulled reading achievement data from the Early Childhood Longitudinal 

Study-Kindergarten (ECLSK) database (NCES, 2001) for children throughout kindergarten and first 

grade (2 timepoints of data collected in each grade). We have estimated a latent growth curve model 

with the 3,856 children akin to the model presented in Kaplan (2002). To illustrate this point, we 

used the intercept estimate from Kaplan’s model (Kaplan, 2002, page 204) as the mean 

hyperparameter for the prior we specified for the intercept of the growth model. Further, we 

arbitrarily specified a variance hyperparameter of 1, thus giving us a subjective prior for the latent 

intercept mean of N(31.37, 1). Results from an analysis with 10,000 burn-in and 10,000 post burn-in 

iterations using the OpenBUGS software are presented in Table 5. We then estimated a second 

model using a diffuse prior for the intercept mean (N(0,106) to see how much of an impact our 

subjective prior has on results. We can see in Table 5 that the percent of relative deviation is quite 

low (under 1%); the corresponding PSRF value is 1.477, which may be considered high given that 

PSRF values are often required to be smaller than 1.1 or 1.2 when assessing convergence. However, 

this use of the PSRF is novel and we might expect more drastic changes in the model since more 

than just starting values have been modified across chains.14 Although the PSRF is a bit high, we can 

interpret results as being relatively stable when the subjective prior is compared to a diffuse prior. In 

                                                 
14 The PSRF is typically used to assess chains when the only difference is in the starting values specified for the chain. 
This use that we propose is completely novel (to our knowledge), and further research should be conducted on the use 
of the PSRF in this context in order to provide additional guidelines for cut-off values of the diagnostic when comparing 
across types of priors, etc.  
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this case, we can conclude that our theory (incorporated into the subjective prior) had little impact 

on the results. Supplementary documents for this example can be found in the online material in 

Folder 5. 

For Bayesian updating, it is essential that researchers report the priors used, even if there is 

no substantive impact on results. In the case where there is a large difference between results, do not 

despair. These findings are interesting and fun. The entire focus of the discussion section can turn 

toward the discrepancy between results obtained using informative versus non-informative priors. 

This discussion illustrates the mismatch between theory and data, and it is up to the researcher to 

come up with an explanation.  

What to show to your supervisor. The size of the effect between informative (or weakly-informative) 

priors and non-informative priors, see Table 4 section iii. 

When to worry. Do not worry at all. Either results match and the subjectivity of the prior does not 

have an impact, or results differ and that becomes an interesting talking point for the discussion. 

When to ask an expert. Never. All findings are fun and if discrepancies do not make sense at first, then 

turn to the literature for explanations.  

Point 9: Are the results stable from a sensitivity analysis? 

Item description. If informative or weakly-informative priors are used, then we suggest running a 

sensitivity analysis of these priors. When subjective priors are in place, then there might be a 

discrepancy between results using different subjective prior settings. A sensitivity analysis for priors 

would entail adjusting the entire prior distribution (i.e., using a completely different prior 

distribution than before) or adjusting hyperparameters upward and downward and re-estimating the 

model with these varied priors. Several different hyperparameter specifications can be made in a 
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sensitivity analysis, and results obtained will point toward the impact of small fluctuations in 

hyperparameter values.  

Take the same ECLSK reading achievement example where we estimate a simple latent 

growth curve model. If we assume a normal distribution for the intercept prior, then we will need to 

specify values for the mean and variance hyperparameters of the subjective prior. If we have the 

intercept mean hyperparameter specified at 31.37 (based on a previous analysis presented in Kaplan, 

2002), then we can start the sensitivity analysis at this point by varying this value upward and 

downward to see how much of an impact the mean hyperparameter of this prior has on the final 

estimate for the intercept. Specifically, we can examine a series of priors with mean hyperparameters 

specified in 5-point increments from this initial value of 31.37. Specifically, we can test mean 

hyperparameters of : 21.37, 26.37, 31.37 (the value in our original prior), 36.37, and 41.37. In this 

case, there would be five different models estimated and we can compare through the Gelman and 

Rubin convergence diagnostic whether the chains resulting from the respective priors are 

comparable. We can also compute the size of the effect to assess how different the results are when 

the prior mean is specified at these levels.   

The purpose of this sensitivity analysis is to assess how much of an impact the location of 

the mean hyperparameter for the prior has on the posterior. For the ECLSK reading data, we have 

reported results from the sensitivity analysis in Table 5. Note the column labeled “PSRF” indicates 

how comparable the new priors specified through the sensitivity analysis are to the original prior 

with a mean hyperparameter of 31.37. We can see that PSRF values all indicate non-convergence 

with values beyond 1.0±.05; notice greater evidence of non-convergence as the mean 

hyperparameter becomes more extreme (i.e., 21.37 and 41.37 have comparatively larger PSRF 

values). However, percent of relative deviation is quite low (under 1% for all comparisons) so we 
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can interpret results as being relatively stable with the use of different mean hyperparameters. We 

would then continue our sensitivity analysis investigation for the intercept to examine the variance 

hyperparameter (see bottom of Table 5). In this case, we tested the prior of N(41.37,0.1) to see the 

impact of varying both hyperparameters. This is perhaps an extreme example of a sensitivity analysis 

cell, but it illustrates the type of results one might get if the prior has a substantial impact on 

estimates. Specifically, we see in Table 5 that the PSRF value is quite high (over 20), indicating non-

convergence between the chains from the two priors. We can also see a very large effect between the 

estimates (over 16%), which further indicates this prior specification had a substantial impact on the 

results. In this case, the researcher would describe the substantive differences in the discussion 

section. 

As another illustration, Figure 4 exhibits how changes in substantive results can be tracked 

throughout a sensitivity analysis. In this case, we have one parameter with a normally distributed 

prior, where we varied the mean and variance hyperparameters. Each of the lines in the plot 

represent a different mean hyperparameter. The y-axis represents the posterior parameter value 

obtained for the estimate, and the x-axis represents the variance hyperparameter for the prior. In 

this example, significance for the parameter of interest is identified with a solid line, and non-

significance of this parameter is denoted with a dashed line. These results show that with a large 

variance hyperparameter of 1000, the value of the mean hyperparameter makes no difference on the 

final parameter estimate. As the variance hyperparameter decreases, the mean hyperparameter has 

more influence on the final estimate obtained. A plot like this can be very helpful in examining how 

significance patterns and substantive interpretations change as the prior is modified. Supplementary 

documents for this example using ECLSK data can be found in the online material in Folder 5. For 

more examples and details on sensitivity analysis of priors see: Hamra, MacLehose, and Cole (2013); 
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Heydari, Miranda-Moreno, Lord, and Fu (2014); Lopes and Tobias (2011); Millar (2004); and van de 

Schoot et al., (2015).  

Upon receiving results from the sensitivity analysis, assess the impact that fluctuations in the 

hyperparameter values have on the substantive conclusions. Results may be stable across the 

sensitivity analysis, or they may be highly instable based on substantive conclusions. Whatever the 

finding, this information is important to report in the results and discussion sections of a paper. We 

should also reiterate here that original priors should not be modified, despite the results obtained. 

What to show to your supervisor. A report showing the (in)stability of the results for the entire sensitivity 

analysis; a table akin to Table 5 or a plot akin to Figure 4 will be particularly useful. 

When to worry. Do not worry necessarily, but note if there is a great deal of instability in substantive 

conclusions, even with small fluctuations in the hyperparameter values. Even if there are only minor 

substantive differences, this is an important factor to discuss in the paper. If there are some 

parameters that are particularly sensitive to changes in the prior through the sensitivity analysis, then 

this could be an indication that the model was mis-specified or there are identification issues 

regarding certain parameters in the model. If this is the case, then the model should be re-specified 

and the Checklist should be repeated with the new model starting with Point 1. In this case, it is 

important to be 100% transparent about any changes that were made in the model or priors as a 

result of the original sensitivity analysis findings. However, if after carefully checking the priors and 

the model the results are still sensitive to different prior specifications, then this may just be the 

result of the study. In this case, the sensitivity of results to the prior settings should be thoroughly 

described in the discussion section. 
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When to ask an expert. If there is a great deal of instability in substantive conclusions, even with small 

fluctuations in the hyperparameter values. This high instability could be a symptom of a larger 

problem with the model or the priors. 

Stage 4: After the Interpretation of the Model Results 

Point 10: Is the Bayesian way of interpreting and reporting model results used? 

Item description. After Points 1-9 have been carefully considered and addressed, model interpretation 

and the reporting of results become the next concern. First, we will consider the issue of properly 

interpreting Bayesian results, which is then followed by a discussion on reporting Bayesian results.  

There are some important distinctions between the interpretation of frequentist and 

Bayesian statistics. One of the most notable distinctions is that the Bayesian framework no longer 

deals in terms of point estimates compared to frequentist approaches. Results obtained under the 

Bayesian framework reflect the posterior distribution obtained, where each parameter is estimated 

with a density capturing uncertainty in the true value. It is common for researchers to summarize the 

posterior density with the mean, median, or mode of the distribution. This summary should be 

interpreted as the central tendency measure for the posterior distribution, rather than as a point 

estimate. In order to capture the spread (and potentially the shape) of the posterior, Bayesian 

credible intervals are constructed. The Bayesian credible interval is akin to the frequentist confidence 

interval, but the interpretations rely on different probability theories thus making interpretations 

different across the two frameworks. For example, a 95% frequentist confidence interval of [0.05, 

1.12] for a regression coefficient would indicate that over long-run frequencies, 95% of the 

confidence intervals constructed in this manner (e.g., with the same sample size, etc.) would contain 

the true population value. In contrast, the 95% Bayesian credible interval of [0.05, 1.12] would be 
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interpreted such that there is a .95 probability of the population regression coefficient falling 

between 0.05 and 1.12, indicating that this regression coefficient likely represents a positive effect.  

 As it has hopefully been made clear at this point, Bayesian analyses have many distinct 

features that are not a part of traditional frequentist methods. As a result, there are different 

considerations when writing up results for a Bayesian model to ensure that all information has been 

properly conveyed and that results can be replicated or priors can be extracted and then updated in 

future Bayesian models.  There are several key components that must be included in a write-up of 

Bayesian results and these include information from all of the previous Points 1-9 listed above, see 

for an example Matzke, Dolan, Logan, Brown, and Wagenmakers (2013).  

What to include in the write-up. When writing an empirical Bayesian manuscript, one could use 

the following list to ensure completeness (see also, van de Schoot and Depaoli, 2014). If one of the 

following points is not adequately addressed in the text, then we feel the paper should not be 

published in its current form. Particular to Bayesian work, openness and transparency is imperative. 

Specifically, it is imperative that in the analytic strategy section a paragraph should be devoted to 

providing information about how priors were obtained and why each prior was specified in that way. 

Also the hyperparameters should be reported in a table or in an online supplementary file. Next, 

information about estimation and convergence must be detailed. The methods section should reveal 

the program used for estimation, the sampler (e.g., Gibbs) implemented, the number of chains, the 

number of burn-in iterations, seed and starting values for the chains, the number of post burn-in 

iterations, and how convergence was checked or monitored (e.g., visual inspection and convergence 

criteria such as the Gelman and Rubin diagnostic). All of the points addressed earlier for identifying 

and checking convergence should also be detailed so that the reader understands the extent to which 

chain convergence was checked. One could refer to our WAMBS-checklist to ensure convergence 



BAYESIAN DIAGNOSTIC CHECKLIST 40  

 

 
 

has been established. Next, the impact of the priors should be carefully described. If (weakly) 

informative priors were used, then the substantive differences to non-informative priors must be 

compared to understand the impact of the prior. Likewise, results of the sensitivity analysis must 

also be described in the text as a means to further describe the impact of the prior on the final 

model results. Again, the WAMBS-checklist could be used for this investigation.  

What to show to your supervisor. The supervisor should be given a full write-up of the results, as well as 

any relevant information appearing in the discussion section. We have provided a hypothetical 

example of a Bayesian results section in Appendix A. 

When to worry. Worry if you cannot understand or convey the differences between conventional and 

Bayesian model results, or if you are not able to create results and discussion sections that reflect all 

of the information constructed in Points 1-9 described above. 

When to ask an expert. Never. There is likely no need to consult an expert for interpretation. Instead, 

the researcher can consult the many reference books and papers we have listed in the introduction 

to aid in Bayesian statistics interpretation. However, if you are unable to write up a section of the 

Bayesian findings after consulting examples and other readings on interpretation and reporting 

Bayesian results, then consult an expert. 

Conclusion 

It is our aim to highlight some of the most important nuances of implementing Bayesian methods 

and to provide the succinct, but comprehensive, When to worry and how to Avoid the Misuse of Bayesian 

Statistics (WAMBS) checklist to aid in avoiding the misuse of Bayes. If the 10 points in this checklist 

are carefully considered and addressed, then many of the common problems or mistakes that arise in 

Bayesian estimation can be avoided or corrected.  
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 There are some limitations and warnings surrounding the use of the WAMBS checklist that 

should be highlighted. First, we note that this checklist may be rather tedious and time-consuming to 

implement in cases where models have many parameters being estimated. For example, item 

response theory models can become cumbersome with sometimes thousands of person parameters 

being estimated under large sample size cases. We acknowledge from experience that implementing 

such a checklist under cases where there are many model parameters is difficult. However, we also 

feel a thorough check is imperative, regardless of the number of model parameters being estimated. 

If, for example, a model with 5000 model parameters is estimated but a few parameters do not reach 

stable convergence, then the model results would not be appropriate to report. It is important to 

check all model parameters, however tedious that may be. To assist in implementing such massive 

parameter checks, we recommend the use of software (e.g., the MplusAutomation package 

implemented in R) that can aid in handling a large number of model parameters. We feel the added 

complexity of using a checklist is a heavy price to pay when implementing Bayesian statistics because 

it does require a good deal of work. However, we also feel using the Checklist is a necessary price to 

pay to ensure that results are trustworthy, the model estimation process is transparent and can be 

replicated, and that estimation and reporting of results exhibit best practice.  

 Second, we did not directly deal with issues tied to the assessment of model fit/selection 

within the Bayesian framework. Properly assessing model fit and model selection are important 

issues to handle alongside the implementation of this checklist. Data-driven model selection 

techniques (e.g., comparing deviance information criteria across competing models) are typically 

considered after the estimation of model parameters. Therefore, it is likely that this Checklist would 

be implemented simultaneously with the model selection process. Although we do not directly 

address Bayesian model fit and selection here (these topics would likely warrant their own checklists, 

in fact), we recognize that these issues would likely be handled in parallel to the issues addressed 
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through the WAMBS-checklist. At a very minimum level, researchers should consult an expert about 

issues surrounding model fit and selection. 

 Finally, there may be times when specific points are not easily satisfied when implementing 

the WAMBS-checklist. For example, it is possible that convergence may not be obtained even after 

doubling the number of iterations. In cases where specific points in the checklist are not satisfied, 

we have provided some additional guidelines to act as a starting point for troubleshooting and 

continuing to strive to satisfy each point. These guidelines are presented in Table 6 and should act as 

“next steps” in thinking if some of the Points are not fulfilled using the Checklist guidelines 

presented here.   

To conclude, this Checklist should act as a guide for implementation and for writing up 

findings. We stress that openness and transparency are vital for implementing any statistical tool, but 

this is especially the case for Bayesian tools. One of the main goals for the WAMBS-checklist is to 

aid in improving replicability of results in Bayesian statistics. There are so many points within the 

process of implementing Bayesian methods where things can go awry (e.g., misinterpretation, 

problems with non-convergence, unintended impact of priors). It is our aim to promote clarity 

during implementation and dissemination of Bayesian modeling, and we hope that the WAMBS-

checklist assists with this goal. Finally, we hope that researchers working within the Bayesian 

framework realize the advantages of estimation and interpretation, and we hope they have fun 

interpreting any (mis)match between data and theory!  
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Table 1. Table to show your supervisor for Point 1: Do you understand the priors? Consider a basic regression analysis with 1 dependent 

variable (Y) and two predictors (X1 and X2).  

 

 

 

Parameters 

Distributional form 

of the priors 

(e.g., normal, inverse 

gamma, etc) 

 

Type of prior 

(non-, weakly, highly 

informative) 

 

 

Source of background 

information 

 

 

 

Picture of Plot 

 

 

 

Hyperparameters 

      

 

Y on X1 

 

Normal  

 
Highly 
Informative 

 
Table x on page xx of the 
meta-analysis of Author et 
al. (2000) 

 

 

N(.8,5); 

Y on X2 
Normal 

Highly 
Informative 

Obtained from expert 
knowledge, see Appendix 
X for more information.  

 

 

N(.1,10); 

Y: Mean Normal Non-Informative  
(software default) 

n/a n/a N(0,1010); 

Y: Residual 

variance Inverse Gamma 
 
Non-Informative  
(software default) 

n/a 
n/a IG(-1,0); 

Note. The example is purely hypothetical and serves only to illustrate how to fill in the table. Supplementary documents for this example can be found in 

the online material in Folder 3. 
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Table 2. Table to show your supervisor for Points 2, 4-6. Consider a basic regression analysis with 1 dependent variable (Y) and two 

predictors (X1 and X2).  

Parameters Trace plot 

(Point 2) 

Histogram 

(Point 4) 

Autocorrelation 

 (Point 5) 

Kernel density plot  

(Point 6) 

     

Y on X1 

    

Y on X2 

  
 

 

Y: Mean 

 
   

Y: Residual 

variance 

 
 

 
 

Note. Supplementary documents for this example can be found in the online material in Folder 3. 
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Table 3. An Example of Local Convergence using PTSD Latent Growth Trajectories: Slope Mean 

Parameter for Latent Class 1 

 
Length of Chain 

Parameter 
Estimate (SD) 

 
Trace Plot 

Geweke z-statistic 
(Significant or not):a 

    

 
Shorter chain:  
6,000 iterations 

 
-0.309(0.417) 

 

 
Non-significant 

    

 
Longer chain:  
50,000 iterations 

 
-2.574(0.535) 

 

 
Non-significant 

 
 

    
a The Geweke convergence diagnostic compares the first and last halves of the post burn-in portion 
of the chain. If the z-statistic is significant for the Geweke diagnostic, then there is evidence of local 
convergence. In this case, the burn-in would need to be increased substantially and the local 
convergence test should be conducted again by doubling the number of iterations to ensure a static 
statistic is obtained. However, as we see in this Table, it is also possible to obtain results of a non-
significant Geweke statistic when local convergence was exhibited. In this case, running the chain 
out much longer was necessary to identify local convergence problems and obtain a static statistic. 
The computation of relative deviation becomes particularly important to capture differences in the 
chains under this circumstance. Supplementary documents for this example can be found in the 
online material in Folder 4. 
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Table 4. Computing Relative Deviation or the Effect of Priors for Model Parameters: Points 3 

(section i), 7 (section ii), and 8 (section iii). 

Parameters Relative Deviation or  
Size of Effect 

Convergence 
Diagnostic 

 

 

(i) 

Deviation for Point 3a 

[(initial converged analysis – 
analysis with double 
iterations)/initial converged 
analysis]*100 

 
Geweke z-statistic  
(Significant or not): 
 

Y on X1 [(0.969-0.970)/ 0.969]*100= -0.10 Non-significant 

Y on X2 [(0.650-0.650)/ 0.650]*100= 0.00 Non-significant 

Y: Mean [(0.510-0.511)/ 0.510]*100= -0.19 Non-significant 

Y: Residual variance [(0.953-0.951)/ 0.953]*100= 0.21 Non-significant 

 

 

(ii) 

Size of the effect for Point 7 
[(initial priors – default/non-
informative priors)/ initial 
priors]*100 

 
 
PSRF  
(convergence or not) 

Y on X1 [(0.969-0.969)/ 0.969]*100= 0.00 Convergence  

Y on X2 [(0.650-0.650)/ 0.650]*100= 0.00 Convergence 

Y: Mean [(0.510-0.510)/ 0.510]*100= 0.00 Convergence 

Y: Residual variance [(0.953-0.949)/ 0.953]*100= 0.42 Convergence 

 

 

(iii) 

Size of the effect for Point 8 
[(initial priors – default/non-
informative priors)/ initial 
priors]*100 

 
 
PSRF  
(convergence or not) 

Y on X1 [(0.969-0.969)/ 0.969]*100= 0.00 Convergence 

Y on X2 [(0.650-0.650)/ 0.650]*100= 0.00 Convergence 

Y: Mean [(0.510-0.510)/ 0.510]*100= 0.00 Convergence 

Y: Residual variance [(0.953-0.953)/ 0.953]*100= 0.00 Convergence 

Note. The Geweke convergence diagnostic compares the first and last halves of the post burn-in 
portion of the chain. If the z-statistic is significant for the Geweke diagnostic, then there is evidence 
of local convergence. In this case, the burn-in would need to be increased substantially and the local 
convergence test should be conducted again by doubling the number of iterations to ensure a static 
statistic is obtained. PSRF = potential scale reduction factor computed from the Gelman and Rubin 
convergence diagnostic for two chains. Typically values beyond 1.0 ± .05 point toward non-
convergence; in this case, priors leading toward different estimates. Supplementary documents for 
this example can be found in the online material in Folder 3. 

a initially with 5,000 iterations, alternative model with 10,000 iterations 
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Table 5. An Example of a Sensitivity Analysis to Examine the Impact of Priors: Points 8 and 9 

Chain  
Comparison 

Intercept 
Estimate (SD) 

 
Trace Plot 

 
PSRF 

Size of Effect 
(Relative 

Deviation)a 

 
Point 8: Compare Subjective Prior to Diffuse Prior 

 
Subjective Prior:  
N(31.37,1) 

23.19(0.149) 

 

  

Compared to:  
N(0, 106) 

23.01(0.152) 

 

1.477 0.776% 

 

 
Point 9: Sensitivity Analysis for Subjective Prior—Altering the Mean Hyperparameter 

(alter hyperparameters upward and downward) 

     
Compared to:  
N(21.37, 1) 

22.97(0.149) 

 

1.645 0.948% 

Compared to:  
N(26.37, 1) 

23.08(0.149) 

 

1.194 0.474% 

Compared to:  
N(36.37, 1) 

23.31(0.150) 

 

1.194 -0.517% 

Compared to:  
N(41.37, 1) 

23.42(0.150) 

 

1.646 -0.992% 

 
Point 9: Sensitivity Analysis for Subjective Prior—Altering the Mean and Variance 

Hyperparameters 

Compared to: 
N(41.37,.1) 

26.91(0.166) 

 

20.442 -16.041% 
 

Note. PSRF = potential scale reduction factor computed from the Gelman and Rubin convergence 
diagnostic for two chains. Typically values beyond 1.0 ± .05 point toward non-convergence; in this 
case, priors leading toward different estimates. Note that estimates may be different from Kaplan 
(2002) due to no covariates being present in the current example. Supplementary documents for this 
example can be found in the online material in Folder 5. 

a Percent of relative deviation can be computed as: [((estimate using subjective prior)-(estimate using 

new prior))/(estimate using subjective prior)]*100. Interpreting percent of relative deviation results 

is largely subjective and dependent on the metric of the parameters. However, relative deviation 

under 1% would likely be considered negligible.  
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Table 6. Actions to Take when WABMS Checklist Points are not Fulfilled 

Points Actions when points are not fulfilled 

1 Keep reading and talking to experts until you can explain your priors. Dive into the literature. 

Explore your network of experts and organize an expert meeting to help inform your selection 

of priors. 

 

2 Keep increasing the number of iterations until this point is satisfied, despite the length of time it 

is taking to estimate. Be prepared to wait a long time for models to converge, especially if the 

model is complex. Be sure your model is properly specified as that can also create problems in 

convergence. 

 

3 If this point is not reached, then keep doubling the number of iterations. Be sure your model is 

properly specified as that can also create problems in convergence. 

 

4 Keep sampling until the histogram has a smooth shape, whatever that shape may be. Note that 

the notion of a “smooth” shape is a bit subjective and often linked to substantive interpretations 

of parameters. Ultimately, you need to make sure you can trust your results and this can be left 

to some subjective assessments along the way. 

 

5 If you found higher degrees of autocorrelation according to the plots, then run with double (or 

more) the number of iterations. If the entire parameter space has been covered and your feel the 

target distribution (e.g., for the statistic) has been converged upon, then there is nothing to 

do/worry about. 

 

6 If you see something you do not expect, then look for a model specification error. If an error is 

suspected or found, then estimate the new model. If there was no error, then consult a 

statistician to determine whether there is a more technical problem (e.g., with the 

parameterization of the model or the priors, etc.). 

 

7-9 Do nothing but interpret the findings. Spend extra time justifying your priors and being 

transparent about your choice. Make a theory-based argument about your model and priors. 

Then be really transparent about your data-prior conflict. 

 

10 Not applicable. 

 

 

  



BAYESIAN DIAGNOSTIC CHECKLIST 57  

 

 
 

 

Figure Captions 

 

Figure 1. Number of papers published with ‘Bayesian estimation’ in the title or abstract (Source: 

Scopus). 

Figure 2. WAMBS-Checklist. 

Figure 3. Illustrating the level of information in a histogram, which represents the estimate for the 

posterior. (A) and (B) illustrate cases where more samples are needed to accurately portray the 

posterior; (C) and (D) illustrate histograms with adequate information for capturing the nature of the 

posterior, with (D) representing the most information of the four plots.  

Figure 4. Illustrating how substantive results can change and be tracked through a sensitivity 

analysis of priors.  

 

  



BAYESIAN DIAGNOSTIC CHECKLIST 58  

 

 
 

 

 

 

Figure 1. Number of papers published with ‘Bayesian estimation’ in the title or abstract (Source: 

Scopus). 
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THE WAMBS-CHECKLIST 
When to worry, and how to Avoid the Misuse of Bayesian Statistics 

DEPAOLI & VAN DE SCHOOT (2016) 

 
Did you show  

your supervisor…? 
Should  

you worry? 
Should you 
consult an 

expert? 

TO BE CHECKED BEFORE ESTIMATING THE 

MODEL 

   

Point 1: Do you understand the priors? Table 1 YES / NO YES / NO 

TO BE CHECKED AFTER ESTIMATION BUT 

BEFORE INSPECTING MODEL RESULTS 

   

Point 2: Does the trace-plot exhibit convergence? Table 2, column 2 YES / NO YES / NO 

Point 3: Does convergence remain after doubling the 
number of iterations? 

Table 4, 
columns 2, 3 (i) 

and akin to Table 3 

YES / NO YES / NO 

Point 4: Does the histogram have enough information? Table 2, column 3 YES / NO n/a 

Point 5: Do the chains exhibit a strong degree of 

autocorrelation? 

Table 2, column 4 YES / NO YES / NO 

Point 6: Does the posterior distribution make 
substantive sense? 

Table 2, column 5 YES / NO YES / NO 

UNDERSTANDING THE EXACT INFLUENCE OF 
THE PRIORS 

   

Point 7: Do different specifications of the multivariate 
variance priors influence the results? 

Table 4, 
columns 2, 3 (ii) 

YES / NO YES / NO 

Point 8: Is there a notable effect of the prior when 
compared with non-informative priors? 

Table 4, 
columns 2, 3 (iii) 

NEVER n/a 

Point 9: Are the results stable from a sensitivity analysis? Sensitivity analysis akin 
to Table 5 or Figure 4 

NEVER YES / NO 

AFTER INTERPRETATION OF MODEL RESULTS    

Point 10: Is the Bayesian way of interpreting and 
reporting model results used? (a) Also report on: 
missing data, model fit and comparison, non-response, 
generalizability, ability to replicate, etc. 

Text – see Appendix YES / NO YES / NO 

Figure 2. WAMBS-Checklist.  
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        (A)            (B) 

 

        (C)            (D) 

Figure 3. Illustrating the level of information in a histogram, which represents the estimate for the 

posterior. (A) and (B) illustrate cases where more samples are needed to accurately portray the 

posterior; (C) and (D) illustrate histograms with adequate information for capturing the nature of the 

posterior, with (D) representing the most information of the four plots. 

 

 



BAYESIAN DIAGNOSTIC CHECKLIST 61  

 

 
 

 

Figure 4. Illustrating how substantive results can change and be tracked through a sensitivity 

analysis of priors.  
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Appendix A 

The following provides an example of how to write up Bayesian results to adhere to Point 10. Take 

a simple example of a regression model with predictors X1 and X2, and outcome Y. The following is 

a portion of a contrived Results section for the model results. 

For in the analytical strategy: 

The regression model was estimated using Bayesian estimation in the Mplus version 7.3 software 

program (Muthén & Muthén, 1998-2015) using a seed value of 200 and starting values based on the 

ML-estimates. Three Markov chains were implemented for each parameter and distinct starting 

values were provided for each of the chains. To assess chain convergence, the Gelman and Rubin 

convergence diagnostic was implemented as described in the Mplus manual with a stricter 

convergence criterion than the default setting: 0.01 instead of 0.05. An initial burn-in phase of 

10,000 iterations was specified, with a fixed number of post burn-in iterations of 10,000. The 

Gelman and Rubin diagnostic indicated that convergence was obtained with these fixed iterations 

for each of these three chains. Next, the trace plots for each model parameter were visually 

inspected. For each of the model parameters, all three chains appeared to converge in that they were 

visually stacked with a constant mean and variance in the post burn-in portion of the chain. To 

ensure that convergence was obtained and that local convergence was not an issue, we estimated the 

model again but with the number of burn-in and post burn-in iterations doubled (40,000 iterations 

total). Again, the Gelman and Rubin (1992a; 1992b) convergence diagnostic indicated convergence 

was obtained and the visual inspection of plots was consistent with that finding. Percent of relative 

deviation can be used to examine how similar (or different) parameter estimates are across multiple 

analyses. Upon computing the percent of relative deviation for model parameters obtained in these 

two analyses, we found that results were almost identical with relative deviation levels less than 

|1|%. The computation for percent of relative deviation for a given model parameter is as follows: 

[(estimate from initial model) – (estimate from expanded model)/(estimate from initial model)]*100. 

We implemented an informative prior for the regression of Y on X1, and relied on the default prior 

settings of the software for the other parameters (see Mplus manual). The background information 

for specifying the hyperparameters, ~N(.5, 0.1) stems from the meta-analysis conducted by Author 

et al. (200x), see Table x on page x. Note that all of the points of the WAMBS-checklist (Depaoli & 

van de Schoot, 2016) were addressed and the results from this checklist can be requested from the 

first author (or downloaded as supplementary material). 

At the end of the results section:  

Because it is important to understand the impact of this theoretically-driven prior, we estimated the 

model using default non-informative priors in Mplus as a method for detecting how much influence 

our informative prior had on the posterior results. Findings from the default prior settings were 

substantively different in that the default settings indicated the regression parameter estimate was 

negative and the informative prior settings found that it was positive. Next, we conducted a 

sensitivity analysis for the informative prior to see what kind of impact the prior might be having. As 
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indicated in the Methods section, the informative prior based on theory for the regression parameter 

was distributed normal with hyperparameters of N(.5, 0.1). In this sensitivity analysis, we varied the 

mean hyperparameter upward and downward by .2 and examined the additional priors: N(.3, 0.1) 

and N(.7, 0.1). Upon estimating models implementing these two priors, we computed the effect of 

the priors with the results from the original N(.5, 0.1) prior. The effect of the prior captures the 

differences between prior settings as “effects” and can be computed using the following equation: 

Effect of the prior = [(initial prior specification – subsequent prior specification)/initial prior 

specification]*100. Using this assessment, we found that statistical and substantive findings were 

comparable for all models in the sensitivity analysis.  The Discussion section will detail explanations 

for the differences in results and the impact these findings may have on the theory under 

investigation. 

 


