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The Basic Two-Level Regression Model 
 

 
Summary. The multilevel regression model has become known in the research literature under a 
variety of names, such as ‘random coefficient model’ (Kreft & de Leeuw, 1998), ‘variance 
component model’ (Searle, Casella & McCulloch, 1992; Longford, 1993), and ‘hierarchical 
linear model’ (Raudenbush & Bryk, 2002; Snijders & Bosker, 2012). Statistically oriented 
publications generally refer to the model as a ‘mixed-effects’ or ‘mixed linear model (Littell, 
Milliken, Stroup & Wolfinger, 1996) and sociologists refer to it as ‘contextual analysis’ 
(Lazarsfeld & Menzel, 1961). The models described in these publications are not exactly the 
same, but they are highly similar, and we refer to them collectively as ‘multilevel regression 
models’. The multilevel regression model assumes that there is a hierarchical data set, often 
consisting of subjects nested within groups, with one single outcome or response variable that is 
measured at the lowest level, and explanatory variables at all existing levels. The multilevel 
regression model can be extended by adding an extra level for multiple outcome variables (see 
chapter 10), while multilevel structural equation models are fully multivariate at all levels (see 
chapters 14 and 15).  Conceptually, it is useful to view the multilevel regression model as a 
hierarchical system of regression equations. In this chapter, we explain the multilevel regression 
model for two-level data, providing both the equations and an example, and later extend this 
model with a three-level example.  
 
 
2.1 Example 
 
Assume that we have data from J classes, with a different number of pupils nj in each class. On 
the pupil level, we have the outcome variable ‘popularity’ (Y), measured by a self-rating scale 
that ranges from 0 (very unpopular) to 10 (very popular). We have two explanatory variables on 
the pupil level: pupil gender (X1: 0=boy, 1=girl) and pupil extraversion (X2, measured on a self-
rating scale ranging from 1–10), and one class level explanatory variable teacher experience (Z: 
in years, ranging from 2–25). There are data on 2000 pupils in 100 classes, so the average class 
size is 20 pupils. The data are described in Appendix E. The data files and other support 
materials are also available online. 
 
To analyze these data, we can set up separate regression equations in each class to predict the 
outcome variable Y using the explanatory variables X as follows: 
 
 0 1 1 2 2ij j j ij j ij ijY X X e      .        (2.1) 

 
Using variable labels instead of algebraic symbols, the equation reads: 
 
 0 1 2ij j j ij j ij ijpopularity gender extraversion e      .    (2.2) 
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In this regression equation, 0j is the intercept, 1j is the regression coefficient (regression slope) 
for the dichotomous explanatory variable gender (i.e., the difference between boys and girls), 2j 
is the regression coefficient (slope) for the continuous explanatory variable extraversion, and eij 
is the usual residual error term. The subscript j is for the classes (j=1…J) and the subscript i is for 
individual pupils (i=1…nj). The difference with the usual regression model is that we assume 
that each class has a different intercept coefficient 0j, and different slope coefficients 1j and 2j. 
This is indicated in equations 2.1 and 2.2 by attaching a subscript j to the regression coefficients. 
The residual errors eij are assumed to have a mean of zero, and a variance to be estimated. Most 
multilevel software assumes that the variance of the residual errors is the same in all classes. 
Different authors (cf. Goldstein, 2011; Raudenbush & Bryk, 2002) use different systems of 
notation. This book uses 2

e  to denote the variance of the lowest level residual errors. 

 

 
 
Figure 2.1 shows a single level regression line for a dependent variable Y regressed on a single  
an explanatory variable X. The regression line represents the predicted values ŷ  for Y, the 
regression coefficient b0 is the intercept, the predicted value for Y if X=0. The regression slope 
b1 indicates the predicted increase in Y if X increases by one unit. 
 
Since in multilevel regression the intercept and slope coefficients vary across the classes, they 
are often referred to as random coefficients. Of course, we hope that this variation is not totally 
random, so we can explain at least some of the variation by introducing higher-level variables. 
Generally, we do not expect to explain all variation, so there will be some unexplained residual 
variation.  In our example, the specific values for the intercept and the slope coefficients are a 
class characteristic. In general, a class with a high intercept is predicted to have more popular 
pupils than a class with a low value for the intercept. Since the model contains a dummy 
variable for gender, the value of the intercept reflects the predicted value for the boys (who 
are coded as zero). Varying intercepts shift the average value for the entire class, both boys 
and girls. Differences in the slope coefficient for gender or extraversion indicate that the 
relationship between the pupils’ gender or extraversion and their predicted popularity is not the 
same in all classes. Some classes may have a high value for the slope coefficient of gender; in 
these classes, the difference between boys and girls is relatively large. Other classes may have a 
low value for the slope coefficient of gender; in these classes, gender has a small effect on the 
popularity, which means that the difference between boys and girls is small. Variance in the 
slope for pupil extraversion is interpreted in a similar way; in classes with a large coefficient for 
the extraversion slope, pupil extraversion has a large impact on their popularity, and vice versa. 
 
Figure 2.2 presents an example with two groups. The panel on the left portrays two groups with 
no slope variation, and as a result the two slopes are parallel. The intercepts for both groups are 
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different. The panel on the right portrays two groups with different slopes, or slope variation. 
Note that variation in slopes also has an effect on the difference between the intercepts! 
 

 
 

 
 
 
Across all classes, the regression coefficients j … j are assumed to have a multivariate 
normal distribution. The next step in the hierarchical regression model is to explain the variation 
of the regression coefficients j … j by introducing explanatory variables at the class level, for 
the intercept 
 
 0 00 01 0j j jZ u     ,          (2.3) 

 
and for the slopes 
 

 
1 10 11 1

2 20 21 2

j j j

j j j

Z u

Z u

  

  

  

  
.          (2.4)  

 
Equation 2.3 predicts the average popularity in a class (the intercept 0j) by the teacher’s 
experience (Z). Thus, if 01 is positive, the average popularity is higher in classes with a more 
experienced teacher. Conversely, if 01 is negative, the average popularity is lower in classes with 
a more experienced teacher. The interpretation of the equations under 2.4 is a bit more 
complicated. The first equation under 2.4 states that the relationship, as expressed by the slope 
coefficient 1j, between the popularity (Y) and the gender (X) of the pupil, depends upon the 
amount of experience of the teacher (Z). If 11 is positive, the gender effect on popularity is larger 
with experienced teachers. Conversely, if 11 is negative, the gender effect on popularity is 
smaller with more experienced teachers. Similarly, the second equation under 2.4 states, if 21 is 
positive, that the effect of extraversion is larger in classes with an experienced teacher. Thus, the 
amount of experience of the teacher acts as a moderator variable for the relationship between 
popularity and gender or extraversion; this relationship varies according to the value of the 
moderator variable. 
 
The u-terms u0j, u1j and u2j in equations 2.3 and 2.4 are (random) residual error terms at the class 
level. These residual errors uj are assumed to have a mean of zero, and to be independent from 
the residual errors eij at the individual (pupil) level. The variance of the residual errors u0j is 
specified as 

0

2
u , and the variance of the residual errors u1j and u2j are specified as 

1

2
u and 

2

2
u . 

The covariances between the residual error terms are denoted by
01u , 

02u and
12u , which are 

generally not assumed to be zero. 
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Note that in equations 2.3 and 2.4 the regression coefficients  are not assumed to vary across 
classes. They therefore have no subscript j to indicate to which class they belong. Because 
they apply to all classes, they are referred to as fixed coefficients. All between-class variation 
left in the  coefficients, after predicting these with the class variable Zj, is assumed to be 
residual error variation. This is captured by the residual error terms uj, which do have 
subscripts j to indicate to which class they belong. 
 
Our model with two pupil level and one class level explanatory variables can be written as a 
single complex regression equation by substituting equations 2.3 and 2.4 into equation 2.1. 
Substitution and rearranging terms gives: 
 

 
00 10 1 20 2 01 11 1 21 2

1 1 2 2 0

ij ij ij j ij j ij j

j ij j ij j ij

Y X X Z X Z X Z

u X u X u e

          

   
.    (2.5) 

 
Using variable labels instead of algebraic symbols, we have 
 
popularityij = 00+ 10 genderij + 20 extraversionij + 01 experiencej  
+11 genderij experiencej +21 extraversionijexperiencej 
  + u1j genderij + u2j extraversionij + u0j+ eij . 
 
The segment [00 + 10 X1ij + 20 X2ij + 01Zj + 11 X1ijZj+ 11 X2ijZj] in equation 2.5 contains the 
fixed coefficients. It is often called the fixed (or deterministic) part of the model. The segment 
[u1jX1ij + u2jX2ij + u0j + eij] in equation 2.5 contains the random error terms, and it is often 
called the random (or stochastic) part of the model. The terms X1iZj and X2ijZj are interaction 
terms that appear in the model as a consequence of modeling the varying regression slope j 
of a pupil level variable Xij with the class level variable Zj. Thus, the moderator effect of Z on 
the relationship between the dependent variable Y and the predictor X, is expressed in the 
single equation version of the model as a cross-level interaction. The interpretation of 
interaction terms in multiple regression analysis is complex, and this is treated in more detail 
in chapter 4. In brief, the point made in chapter 4 is that the substantive interpretation of the 
coefficients in models with interactions is much simpler if the variables making up the 
interaction are expressed as deviations from their respective means. 
 
Note that the random error terms u1j are connected to the Xij. Since the explanatory variable Xij 
and the corresponding error term uj are multiplied, the resulting error term will be different for 
different values of the explanatory variable Xij, a situation that in ordinary multiple regression 
analysis is called ‘heteroscedasticity’. The usual multiple regression model assumes ‘homo-
scedasticity’, which means that the variance of the residual errors is independent of the values 
of the explanatory variables. If this assumption is not true, ordinary multiple regression does not 
perform very well. This is another reason why analyzing multilevel data with ordinary multiple 
regression techniques does not perform well. 
 
As explained in the introduction in chapter 1, multilevel models are needed because with 
grouped data observations from the same group are generally more similar to each other than 
the observations from different groups, and this violates the assumption of independence of 
all observations. The amount of dependence can be expressed as a correlation coefficient: the 
intraclass correlation. The methodological literature contains a number of different formulas 
to estimate the intraclass correlation . For example, if we use one-way analysis of variance 
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with the grouping variable as independent variable to test the group effect on our outcome 
variable, the intraclass correlation is given by  = [MS(B)-MS(error)]/[MS(B)+(n-
1)×MS(error)], where MS(B) is the Between Groups Mean Square and n is the common 
group size. Shrout and Fleiss (1979) give an overview of formulas for the intraclass 
correlation for a variety of research designs. 
 
The multilevel regression model can also be used to produce an estimate of the intraclass 
correlation. The model used for this purpose is a model that contains no explanatory variables 
at all, the so-called intercept-only or empty model (also referred to as baseline model). The 
intercept-only model is derived from equations 2.1 and 2.3 as follows. If there are no 
explanatory variables X at the lowest level, equation 2.1 reduces to 
 
 Yij = 0j + eij .           (2.6) 
 
Likewise, if there are no explanatory variables Z at the highest level, equation 2.3 reduces to 
 
 0j = 00 + u0j .           (2.7) 
 
We find the single equation model by substituting 2.7 into 2.6: 
 
 Yij = 00 + u0j + eij .          (2.8) 
 
The intercept-only model of equation 2.8 does not explain any variance in Y. It only decomposes 
the variance into two independent components: 2

e , which is the variance of the lowest-level 

errors eij, and 2
0u , which is the variance of the highest-level errors u0j. These two variances sum 

up to the total variance, hence they are often referred to as variance components. Using this 
model, we can define the intraclass correlation  by the equation 
 

 0

0

2

2 2

u

u e




 



.           (2.9) 

 
The intraclass correlation  indicates the proportion of the total variance explained by the 
grouping structure in the population. Equation 2.9 simply states that the intraclass correlation is 
the proportion of group level variance compared to the total variance.1 The intraclass correlation 
 can also be interpreted as the expected correlation between two randomly drawn units that are 
in the same group. 
 
In the intercept only model we defined variance of the lowest-level errors and variance of the 
highest-level errors. Both terms can be interpreted as unexplained variance on both levels since 
there are no predictor in the model specified yet. After adding predictors, just like in ordinary 
regression analyses, the R², which is interpreted as the proportion of variance modeled by the 
explanatory variables, can be calculated. In the case of multilevel analyses, however, there is 
variance to be explained at every level (and also for random slope factors). The interpretation of 
these separate R² values are dependent on the ICC-values. For example, if the R² at the highest 

                                                 
1 The intraclass correlation is an estimate of the proportion of group-level variance in the population. The proportion 
of group-level variance in the sample is given by the correlation ratio ² (eta-squared, cf. Tabachnick & Fidell, 2013, 
p. 54): ²=SS(B)/SS(Total). 
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level appears to be .20 and the ICC is .40, then out of 40% of the total variance 20% is explained. 
This is further explained in Chapter 4. 
 
 
2.2 An extended example 
 
The intercept-only model is useful as a null-model that serves as a benchmark with which other 
models are compared. For our pupil popularity example data, the intercept-only model is written 
as 
 
popularityij = 00 + u0j + eij. 
 
The model that includes pupil gender, pupil extraversion and teacher experience, but not the 
cross-level interactions, is written as 
 
 popularityij = 00 + 10 genderij + 20 extraversionij + 01 experiencej  
+ u1j genderij + u2j extraversionij + u0j + eij. 
 
 

Table 2.1. Intercept-only model and model with explanatory variables 

Model: 
Single level 
model 

M0: Intercept 
only 

M1: with 
predictors 

Fixed part  Coefficient (s.e.) Coefficient (s.e.) 
Intercept 5.08 (.03) 5.08 (.09) 0.74 (.20) 
Pupil gender   1.25 (.04) 
Pupil extraversion   0.45 (.03) 
Teacher experience   0.09 (.01) 
Random parta    

2
e  1.91 (.06) 1.22 (.04) 0.55 (.02) 
2
0u   0.69 (.11) 1.28 (.47) 

2
1u    0.00 (-) 

2
2u    0.03 (.008) 

Deviance 6970.4 6327.5 4812.8 
a For simplicity the covariances are not included 

 
 
Table 2.1 presents the parameter estimates and standard errors for both models.2 For comparison, 
the first column presents the parameter estimates of a single level model. The intercept is 
estimated correctly, but the variance term combines the level-one and level-two variances, and is 
for that reason not meaningful. M0, the intercept only two-level model, splits this variance term 
in a variance at the first and a variance at the second level. The intercept-only two-level model 
estimates the intercept as 5.08, which is simply the average popularity across all classes and 
pupils. The variance of the pupil level residual errors, symbolized by 2

e , is estimated as 1.22. 

                                                 
1 For reasons to be explained later, different options for the details of the Maximum Likelihood estimation 
procedure may result in slightly different estimates. So, if you re-analyze the example data from this book, the 
results may differ slightly from the results given here. However, these differences should never be so large that 
you would draw entirely different conclusions. 
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The variance of the class level residual errors, symbolized by 2
0u , is estimated as 0.69. All 

parameter estimates are much larger than the corresponding standard errors, and calculation of 
the Z-test shows that they are all significant at p <0.005.3 The intraclass correlation, calculated by 

equation 2.9 as  2 2 2
0 0/u u e     , is 0.69/1.91, which equals 0.36. Thus, 36% of the variance 

of the popularity scores is at the group level, which is very high for social science data. Since the 
intercept-only model contains no explanatory variables, the residual variances represent 
unexplained error variance. The deviance reported in Table 2.1 is a measure of model misfit; 
when we add explanatory variables to the model, the deviance will go down. 
 
The second model in Table 2.1 includes pupil gender and extraversion and teacher experience as 
explanatory variables. The regression coefficients for all three variables are significant. The 
regression coefficient for pupil gender is 1.25. Since pupil gender is coded 0=boy, 1=girl, this 
means that on average the girls score 1.25 points higher than boys on the popularity measure, 
when all other variables are kept constant. The regression coefficient for pupil extraversion is 
0.45, which means that with each scale point higher on the extraversion measure, the popularity 
is expected to increase with 0.45 scale points. The regression coefficient for teacher experience is 
0.09, which means that for each year of experience of the teacher, the average popularity score of 
the class goes up with 0.09 points. This does not seem very much, but the teacher experience in 
our example data ranges from 2 to 25 years, so the predicted difference between the least 
experienced and the most experienced teacher is (25-2=) 23×0.09=2.07 points on the popularity 
measure. The value of the intercept is generally not interpreted, it is the expected value of the 
dependent variable if all explanatory variables have the value zero. We can use the standard 
errors of the regression coefficients reported in Table 2.1 to construct a 95% confidence interval. 
For the regression coefficient of pupil gender, the 95% confidence interval runs from 1.17 to 
1.33, the confidence interval for pupil extraversion runs from 0.39 to 0.51, and the 95% 
confidence interval for the regression coefficient of teacher experience runs from 0.07 to 0.11.4 
Note that the interpretation of the regression coefficients in the fixed part is no different than in 
any other regression model (cf. Aiken & West, 1991). 
 
The model with the explanatory variables includes variance components for the regression 
coefficients of pupil gender and pupil extraversion, symbolized by 2

1u  and 2
2u  in Table 2.1. 

The variance of the regression coefficients for pupil extraversion across classes is estimated as 
0.03, with a standard error of 0.008. The variance of the regression coefficients for pupil gender 
is estimated as zero and not significant, so the hypothesis that the regression slopes for pupil 
gender vary across classes is not supported by the data. We should remove the residual variance 
term for the gender slopes from the model, and estimate the new model again. Table 2.2 presents 
the estimates for the model with a fixed slope for the effect of pupil gender. Table 2.2 also 
includes the covariance between the class-level errors for the intercept and the extraversion 
slope. These covariances are rarely interpreted (for an exception see chapters 5 and 16 where 
growth models are discussed), and for that reason they are often not included in the reported 
tables. However, as Table 2.2 demonstrates, they can be quite large and significant, so as a rule 
they are always included in the model. 
 
 
 
 

                                                 
2 Testing variances is preferably done with a test based on the deviance, which is explained in chapter 3.  
4 Chapter 3 treats the interpretation of confidence intervals in more detail. 
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Table 2.2. Model with explanatory variables, 
extraversion slope random 
Model: M1: with predictors 
Fixed part Coefficient (s.e.) 
Intercept 0.74 (.20) 
Pupil gender 1.25 (.04) 
Pupil extraversion 0.45 (.02) 
Teacher experience 0.09 (.01) 
Random part  

2
e  0.55 (.02) 
2
0u  1.28 (.28) 

2
2u  0.03 (.008) 

02u  -.18 (.05) 

Deviance 4812.8 
 

The significant variance of the regression slopes for pupil extraversion implies that we should 
not interpret the estimated value of 0.45 without considering this variation. In an ordinary 
regression model, without multilevel structure, the value of 0.45 means that for each point 
different on the extraversion scale, the pupil popularity goes up with 0.45, for all pupils in all 
classes. In our multilevel model, the regression coefficient for extraversion varies across the 
classes, and the value of 0.45 is just the expected value (the mean) across all classes. The varying 
regression slopes for pupil extraversion are assumed to follow a normal distribution. The 
variance of this distribution is in our example estimated as 0.034. Interpretation of this variation 
is easier when we consider the standard deviation, which is the square root of the variance and 
equal to 0.18 in our example data. A useful characteristic of the standard deviation is that with 
normally distributed observations about 67% of the observations lie between one standard 
deviation below and above the mean, and about 95% of the observations lie between two 
standard deviations below and above the mean. If we apply this to the regression coefficients for 
pupil gender, we conclude that about 67% of the regression coefficients are expected to lie 
between (0.45-0.18=) 0.27 and (0.45+0.18=) 0.63, and about 95% are expected to lie between 
(0.45-0.37=) 0.08 and (0.45+0.37=) 0.82. The more precise value of Z.975=1.96 leads to the 95% 
predictive interval calculated as 0.09–0.81. We can also use the standard normal distribution to 
estimate the percentage of regression coefficients that are negative. As it turns out, if the mean 
regression coefficient for pupil extraversion is 0.45, given the estimated slope variance, less than 
1% of the classes are expected to have a regression coefficient that is actually negative. Note that 
the 95% interval computed here is totally different from the 95% confidence interval for the 
regression coefficient of pupil extraversion, which runs from 0.41 to 0.50. The 95% confidence 
interval applies to 20, the mean value of the regression coefficients across all the classes. The 
95% interval calculated here is the 95% predictive interval, which expresses that 95% of the 
regression coefficients of the variable ‘pupil extraversion’ in the classes are predicted to lie 
between 0.09 and 0.81. 
 
Given the significant variance of the regression coefficient of pupil extraversion across the 
classes it is attractive to attempt to predict its variation using class level variables. We have one 
class level variable: teacher experience. The individual level regression equation for this 
example, using variable labels instead of symbols, is given by: 
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 0 1 2ij j ij j ij ijpopularity gender extraversion e      .    (2.10) 

 
The regression coefficient 1 for pupil gender does not have a subscript j, because it is not 
assumed to vary across classes. The regression equations predicting 0j, the intercept in class j, 
and 2j, the regression slope of pupil extraversion in class j, are given by equation 2.3 and 2.4, 
which are rewritten below using variable labels 
 

0 00 01 0

2 20 21 2

j j j

j j j

experience u

experience u

  

  

  

  
.         (2.11) 

 
By substituting 2.11 into 2.10 we get 
 

00 10 20

01 21 2 0

ij ij ij

j ij j j ij j ij

popularity gender extraversion

experience extraversion experience u extraversion u e

  

 

   

    
 (2.12) 

 
The algebraic manipulations of the equations above make clear that to explain the variance of the 
regression slopes 2j, we need to introduce an interaction term in the model. This interaction, 
between the variables pupil extraversion and teacher experience, is a cross-level interaction, 
because it involves explanatory variables from different levels. Table 2.3 presents the estimates 
from a model with this cross-level interaction. For comparison, the estimates for the model 
without this interaction are also included in Table 2.3. 
 
The estimates for the fixed coefficients in Table 2.3 are similar for the effect of pupil gender, but 
the regression slopes for pupil extraversion and teacher experience are considerably larger in the 
cross-level model. The interpretation remains the same: extraverted pupils are more popular. The 
regression coefficient for the cross-level interaction is –0.03, which is small but significant. This 
interaction is formed by multiplying the scores for the variables ‘pupil extraversion’ and ‘teacher 
experience,’ and the negative value means that with experienced teachers, the advantage of 
extraverted is smaller than expected from the direct effects only. Thus, the difference between 
extraverted and introverted pupils is smaller with more experienced teachers. 
 

Table 2.3. Model without and with cross-level interaction 
Model: M1A: main effects M2: with interaction 
Fixed part Coefficient (s.e.) Coefficient (s.e.) 
Intercept 0.74 (.20) -1.21 (.27) 
Pupil gender 1.25 (.04) 1.24 (.04) 
Pupil extraversion 0.45 (.02) 0.80 (.04) 
Teacher experience 0.09 (.01) 0.23 (.02) 
Extra*T.experience  -.03 (.003) 
Random part   

2
e  0.55 (.02) 0.55 (.02) 
2
0u  1.28 (.28) 0.45 (.16) 

2
2u  0.03 (.008) 0.005 (.004) 

02u  -.18 (.05) -.03 (.02) 

Deviance 4812.8 4747.6 
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Comparison of the other results between the two models shows that the variance component for 
pupil extraversion goes down from 0.03 in the main effects model to 0.005 in the cross-level 
model. Apparently, the cross-level model explains some of the variation of the slopes for pupil 
extraversion. The deviance also goes down, which indicates that the model fits better than the 
previous model. The other differences in the random part are more difficult to interpret. Much of 
the difficulty in reconciling the estimates in the two models in Table 2.3 stems from adding an 
interaction effect. This issue is discussed in more detail in Chapter Four. 
 
The coefficients in the tables are all unstandardized regression coefficients. To interpret them 
properly, we must take the scale of the explanatory variables into account. In multiple regression 
analysis, and structural equation models (SEM), for that matter, the regression coefficients are 
often standardized because that facilitates the interpretation when one wants to compare the 
effects of different variables within one sample. If the goal of the analysis is to compare 
parameter estimates from different samples to each other, one should always use unstandardized 
coefficients. To standardize the regression coefficients, as presented in Table 2.1 or Table 2.3, 
one could standardize all variables before putting them into the multilevel analysis. However, 
this would in general also change the estimates of the variance components, and their standard 
errors as well.  Therefore, it is better to derive the standardized regression coefficients from the 
unstandardized coefficients: 
 

* . . .

. . .

unstandardized coefficient stand dev explanatory varstandardized
coefficient stand dev outcomevar

   (2.13) 

 
In our example data, the standard deviations are: 1.38 for popularity, 0.51 for gender, 1.26 for 
extraversion, and 6.55 for teacher experience. Table 2.4 presents the unstandardized and 
standardized coefficients for the second model in Table 2.2. It also presents the estimates that we 
obtain if we first standardize all variables, and then carry out the analysis. 
 
 

Table 2.4. Comparing unstandardized and standardized estimates 
Model: Standardization using 2.13 Standardized variables 
Fixed part Coefficient (s.e.)       standardized Coefficient (s.e.) 
Intercept 0.74 (.20)     -  -.03 (.04) 
Pupil gender 1.25 (.04)  0.46 0.45 (.01) 
Pupil extraversion 0.45 (.02)  0.41 0.41 (.02) 
Teacher 
experience 

0.09 (.01)  0.43 0.43 (.04) 

Random part   
2
e  0.55 (.02) 0.28 (.01) 
2
0u  1.28 (.28) 0.15 (.02) 

2
2u  0.03 (.008) 0.03 (.01) 

02u  -.18 (.01) -.01 (.01) 

Deviance 4812.8 3517.2 
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Table 2.4 shows that the standardized regression coefficients are almost the same as the 
regression coefficients estimated for standardized variables. The small differences in Table 2.4 
are simply due to rounding errors. However, if we use standardized variables in our analysis, we 
find very different variance components and a very different value for the deviance. This is not 
only the effect of scaling the variables differently; the covariance between the slope for pupil 
extraversion and the intercept is significant for the unstandardized variables, but not significant 
for the standardized variables. This kind of difference in results is general. The fixed part of the 
multilevel regression model is invariant for linear transformations, just as the regression 
coefficients in the ordinary single-level regression model. This means that if we change the scale 
of our explanatory variables, the regression coefficients and the corresponding standard errors 
change by the same multiplication factor, and all associated p-values remain exactly the same. 
However, the random part of the multilevel regression model is not invariant for linear 
transformations. The estimates of the variance components in the random part can and do 
change, sometimes dramatically. This is discussed in more detail in section 4.2 in Chapter Four. 
The conclusion to be drawn here is that, if we have a complicated random part, including random 
components for regression slopes, we should think carefully about the scale of our explanatory 
variables. If our only goal is to present standardized coefficients in addition to the unstandardized 
coefficients, applying equation 2.13 is safer than transforming our variables. On the other hand, 
we may estimate the unstandardized results, including the random part and the deviance, and 
then re-analyze the data using standardized variables, merely using this analysis as a 
computational trick to obtain the standardized regression coefficients without having to do hand 
calculations. 
 
 
2.3 Three- and more-level regression models 
 
2.3.1 Multiple-level models 
 
In principle, the extension of the two-level regression model to three and more levels is 
straightforward. There is an outcome variable at the first, the lowest level. In addition, there may 
be explanatory variables at all available levels. The problem is that three- and more-level models 
can become complicated very fast. In addition to the usual fixed regression coefficients, we must 
entertain the possibility that regression coefficients for first-level explanatory variables may vary 
across units of both the second and the third level. Regression coefficients for second-level 
explanatory variables may vary across units of the third level. To explain such variation, we must 
include cross-level interactions in the model. Regression slopes for the cross-level interaction 
between first-level and second-level variables may themselves vary across third-level units. To 
explain such variation, we need a three-way interaction involving variables at all three levels. 
 
The equations for such models are complicated, especially when we do not use the more 
compact summation notation but write out the complete single equation-version of the model in 
an algebraic format (for a note on notation see section 2.4). 
 
The resulting models are not only difficult to follow from a conceptual point of view; they may 
also be difficult to estimate in practice. The number of estimated parameters is considerable, and 
at the same time the highest level sample size tends to become relatively smaller. As DiPrete and 
Forristal (1994, p. 349) put it, the imagination of the researchers “can easily outrun the 
capacity of the data, the computer, and current optimization techniques to provide robust 
estimates.” 
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Nevertheless, three- and more-level models have their place in multilevel analysis. Intuitively, 
three-level structures such as pupils in classes in schools, or respondents nested within 
households, nested within regions, appear to be both conceptually and empirically manageable. 
If the lowest level is repeated measures over time, having repeated measures on pupils nested 
within schools again does not appear to be overly complicated. In such cases, the solution for the 
conceptual and statistical problems mentioned is to keep models reasonably small. Especially 
specification of the higher-level variances and covariances should be driven by theoretical 
considerations. A higher-level variance for a specific regression coefficient implies that this 
regression coefficient is assumed to vary across units at that level. A higher-level covariance 
between two specific regression coefficients implies that these regression coefficients are 
assumed to covary across units at that level. Especially when models become large and 
complicated, it is advisable to avoid higher-order interactions, and to include in the random part 
only those elements for which there is strong theoretical or empirical justification. This implies 
that an exhaustive search for second-order and higher-order interactions is not a good idea. In 
general, we should seek for higher-order interactions only if there is strong theoretical 
justification for their importance, or if an unusually large variance component for a regression 
slope calls for explanation. For the random part of the model, there are usually more convincing 
theoretical reasons for the higher-level variance components than for the covariance components. 
Especially if the covariances are small and insignificant, analysts sometimes do not include all 
possible covariances in the model. This is defensible, with some exceptions. First, it is 
recommended that the covariances between the intercept and the random slopes are always 
included. Second, it is recommended to include covariances corresponding to slopes of dummy-
variables belonging to the same categorical variable, and for variables that are involved in an 
interaction or belong to the same polynomial expression. 
 
2.3.2 Intraclass correlations in three-level models 
 
In a two-level model, the intraclass correlation is calculated in the intercept-only model using 
equation 2.9, which is repeated below: 
 

 0

0

2

2 2

u

u e




 



.          (2.9, repeated) 

 
The intraclass correlation is an indication of the proportion of variance at the second level, and it 
can also be interpreted as the expected (population) correlation between two randomly chosen 
individuals within the same group. 
 
If we have a three-level model, for instance pupils nested within classes, nested within schools, 
there are two ways to calculate the intraclass correlation. First, we estimate an intercept-only 
model for the three-level data, for which the single-equation model can be written as follows: 
 
 Yijk = 000 + v0k + u0jk + eijk .         (2.15) 
 
The variances at the first, second, and third level are respectively 2

e , 
0

2
u , and 

0

2
v . The first 

method (cf. Davis & Scott, 1995) defines the intraclass correlations at the class and school level 
as 
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and 
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The second method (cf. Siddiqui, Hedeker, Flay & Hu, 1996) defines the intraclass correlations 
at the class and school level as 
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and 

 0
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v
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
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 .         (2.19) 

 
Actually, both methods are correct (Algina, 2000). The first method identifies the proportion of 
variance at the class and school level. This should be used if we are interested in a decomposition 
of the variance across the available levels, or if we are interested in how much variance is located 
at each level (a topic discussed in section 4.5). The second method represents an estimate of the 
expected (population) correlation between two randomly chosen elements in the same group. So 
class as calculated in equation 2.18 is the expected correlation between two pupils within the 
same class, and it correctly takes into account that two pupils who are in the same class must by 
definition also be in the same school. For this reason, the variance components for classes and 
schools must both be in the numerator of equation 2.18. If the two sets of estimates are different, 
which may happen if the amount of variance at the school level is large, there is no contradiction 
involved. Both sets of equations express two different aspects of the data, which happen to 
coincide when there are only two levels. The first method, which identifies the proportion of 
variance at each level, is the one most often used. 
 
2.3.3. An example of a three-level model 
 
The data in this example are from a hypothetical study on stress in hospitals. The data are from 
nurses working in wards nested within hospitals. In each of 25 hospitals, four wards are 
selected and randomly assigned to an experimental and control condition. In the experimental 
condition, a training program is offered to all nurses to cope with job-related stress. After the 
program is completed, a sample of about 10 nurses from each ward is given a test that 
measures job-related stress. Additional variables are: nurse age (years), nurse experience 
(years), nurse gender (0=male, 1=female), type of ward (0=general care, 1=special care), and 
hospital size (0=small, 1=medium, 2=large). 
 
This is an example of an experiment where the experimental intervention is carried out on a 
higher level, in this example the ward level. In biomedical research this design is known as a 
multisite cluster randomized trial. They are quite common, also in educational and 
organizational research, where entire classes or schools are assigned to experimental and 
control conditions. Since the design variable Experimental versus Control group (ExpCon) is 
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manipulated at the second (ward) level, we can study whether the experimental effect is 
different in different hospitals, by defining the regression coefficient for the ExpCon variable 
as random at the hospital level. 
 
In this example, the variable ExpCon is of main interest, and the other variables are 
covariates. Their function is to control for differences between the groups, which can occur 
even is randomization is used, especially with small samples, and to explain variance in the 
outcome variable stress. To the extent that these variables successfully explain variance, the 
power of the test for the effect of ExpCon will be increased. Therefore, although logically we 
can test if explanatory variables at the first level have random coefficients at the second of 
third level, and if explanatory variables at the second level have random coefficients at the 
third level, these possibilities are not pursued. We do test a model with a random coefficient 
for ExpCon at the third level, where there turns out to be significant slope variation. This 
varying slope can be predicted by adding a cross-level interaction between the variables 
expcon and hospsize. In view of this interaction, the variables expcon and hospsize have been 
centered on their overall mean.5 Table 2.5 presents the results for a series of models. 
 

Table 2.5. Models for stress in hospitals and wards 

Model: 
M0: 
Intercept only 

M1: 
with predictors 

M2: 
with random 
slope ExpCon 

M3: 
with cross-level 
interaction 

Fixed part Coef. (s.e.) Coef. (s.e.) Coef. (s.e.) Coef. (s.e.) 
Intercept 5.00 (0.11) 5.50 (.12) 5.46 (.12) 5.50 (.11) 
ExpCona  -.70 (.12) -.70 (.18) -0.50 (.11) 
Age  0.02 (.002) 0.02 (.002) 0.02 (.002) 
Gender  -.45 (.03) -.45 (.03) -.45 (.03) 
Experience  -0.06 (.004) -.06 (.004) -.06 (.004) 
Ward type  0.05 (.12) 0.05 (.07) 0.05 (.07) 
Hosp. Sizea  0.46 (.12) 0.29 (.12) .46 (.12) 
Exp*HSize    1.00 (.16) 
Random 
part 

 
   

2
e ijk  0.30 (.01) 0.22 (.01) 0.22 (.01) 0.22 (.01) 
2
0u jk  0.49 (.09) 0.33 (.06) 0.11 (.03) 0.11 (.03) 

2
0v k  0.16 (.09) 0.10 (0.05) 0.166 (.06) 0.15 (.05) 

2
1u k    0.66 (.22) 0.18 (.09) 

Deviance 1942.4 1604.4 1574.2 1550.8 
a Centered on grand mean 

 
The equation for the first model, the intercept-only model is 
 

000 0 0ijk k jk ijkstress v u e    .         (2.20) 

 

                                                 
5 Chapter 4 discusses the interpretation of interactions and centering. 
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This produces the variance estimates in the M0 column of Table 2.5. The proportion of variance 
(ICC) is 0.52 at the ward level, and 0.17 at the hospital level, calculated following equations 2.18 
and 2.19. The nurse level and the ward level variances are evidently significant. The test statistic 
for the hospital level variance is Z=0.162/0.0852=1.901, which produces a one-sided p-value of 
0.029. The hospital level variance is significant at the 5% level. The sequence of models in Table 
2.5 shows that all predictor variables have a significant effect, except the ward type, and that the 
experimental intervention significantly lowers stress. The experimental effect varies across 
hospitals, and a large part of this variation can be explained by hospital size; in large hospitals 
the experimental effect is smaller. 
 
 
2.4 Notation and software 
 
2.4.1 Notation 
 
In general, there will be more than one explanatory variable at the lowest level and more than 
one explanatory variable at the highest level. Assume that we have P explanatory variables X at 
the lowest level, indicated by the subscript p (p=1…P). Likewise, we have Q explanatory 
variables Z at the highest level, indicated by the subscript q (q=1…Q). Then, equation 2.5 
becomes the more general equation: 
 
 Yij = 00 + p0 Xpij + 0q Zqj + pq ZqjXpij + upj Xpij + u0j + eij .    (2.21) 
 
Using summation notation, we can express the same equation as 
 

00 0 0 0ij p pij q qj pq pij qj pj pij j ij
p q p q p

Y X Z X Z u X u e             .  (2.22) 

 
The errors at the lowest level eij are assumed to have a normal distribution with a mean of zero 
and a common variance e² in all groups. The u-terms u0j and upj are the residual error terms at 
the highest level. They are assumed to be independent from the errors eij at the individual level, 
and to have a multivariate normal distribution with means of zero. The variance of the residual 
errors u0j is the variance of the intercepts between the groups, symbolized by

0

2
u . The variances 

of the residual errors upj are the variances of the slopes between the groups, symbolized by 2

pu . 

The covariances between the residual error terms 
'ppu are generally not assumed to be zero; they 

are collected in the higher level variance/covariance matrix 6 
 
Note that in equation 2.15, 00, the regression coefficient for the intercept, is not associated with 
an explanatory variable. We can expand the equation by providing an explanatory variable that is 
a constant equal to one for all observed units. This yields the equation 
 
 Yij = p0 Xpij + pq ZqjXpij + upj Xpij + eij       (2.23) 
 
where X0ij=1, and p=0…P. Equation 2.23 makes clear that the intercept is a regression 
coefficient, just like the other regression coefficients in the equation. Some multilevel software, 
for instance HLM (Raudenbush, Bryk, Cheongh, Congdon & Du Toit, 2011) puts the intercept 
                                                 
6 We may attach a subscript to Ω  to indicate to which level it belongs. As long as there is no risk of confusion, 
the simpler notation without the subscript is used. 
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variable X0=1 in the regression equation by default. Other multilevel software, for instance 
MLwiN (Rasbash, Steele, Browne & Goldstein, 2015), requires that the analyst includes a 
variable in the data set that equals one in all cases, which must be added explicitly to the 
regression equation. 
 
Equation 2.23 can be made very general if we let X be the matrix of all explanatory variables in 
the fixed part, symbolize the residual errors at all levels by u(l) with l denoting the level, and 
associate all error components with predictor variables Z, which may or may not be equal to the 
X. This produces the very general matrix formula Y=Xβ+Z(l)u(l) (cf. Goldstein, 2011, appendix 
2.1). Since this book is more about applications than about mathematical statistics, it generally 
uses the algebraic notation, except when multivariate procedures such as structural equation 
modeling are discussed. 
 
The notation used in this book is close to the notation used by Goldstein (2011) and Kreft and de 
Leeuw (1998). The most important difference is that these authors indicate the higher-level 
variance by 00 instead of our

0

2
u . The logic is that, if 01 indicates the covariance between 

variables 0 and 1, then 00 is the covariance of variable 0 with itself, which is its variance. 
Raudenbush and Bryk (2002), and Snijders and Bosker (2012) use a different notation; they 
denote the lowest level error terms by rij, and the higher-level error terms by uj. The lowest level 
variance is 2 in their notation. The higher-level variances and covariances are indicated by the 
Greek letter tau; for instance, the intercept variance is given by . The pp are collected in the 
matrix TAU, symbolized as . The HLM program and manual in part use a different notation, for 
instance when discussing longitudinal and three-level models. 
 
In models with more than two levels, two different notational systems are used. One approach is 
to use different Greek characters for the regression coefficients at different levels, and different 
(Greek or Latin) characters for the variance terms at different levels. With many levels, this 
becomes cumbersome, and it is simpler to use the same character, say  for the regression slopes 
and u for the residual variance terms, and let the number of subscripts indicate to which level 
these belong. 
 
2.4.2 Software 
 
Multilevel models can be formulated in two ways: (1) by presenting separate equations for each 
of the levels, and (2) by combining all equations by substitution into a single model-equation. 
The softwares HLM (Raudenbush et al., 2011) and Mplus (Muthén & Muthén, 1998-2015) 
require specification of the separate equations at each available level. Most other software, e.g., 
MLwiN (Rasbash et al., 2015), SAS Proc Mixed (Littell et al., 1996), SPSS command Mixed 
(Norusis, 2012), and the R package LME4 (Bates et al., 2015) use the single equation 
representation. Both representations have their advantages and disadvantages. The separate-
equation representation has the advantage that it is always clear how the model is built up. The 
disadvantage is that it hides from view that modeling regression slopes by other variables is 
equivalent to adding a cross-level interaction to the model. As will be explained in Chapter Four, 
estimating and interpreting interactions correctly requires careful thinking. On the other hand, 
while the single-equation representation makes the existence of interactions obvious, it conceals 
the role of the complicated error components that are created by modeling varying slopes. In 
practice, to keep track of the model, it is recommended to start by writing the separate equations 
for the separate levels, and to use substitution to arrive at the single-equation representation. 
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To take a quote from Singer’s excellent introduction to using SAS Proc Mixed for multilevel 
modeling (Singer, 1998, p. 350): “Statistical software does not a statistician make. That said, 
without software, few statisticians and even fewer empirical researchers would fit the kinds of 
sophisticated models being promulgated today.” Indeed, software does not make a statistician, 
but the advent of powerful and user-friendly software for multilevel modeling has had a large 
impact in research fields as diverse as education, organizational research, demography, 
epidemiology, and medicine. This book focuses on the conceptual and statistical issues that 
arise in multilevel modeling of complex data structures. It assumes that researchers who apply 
these techniques have access to and familiarity with some software that can estimate these 
models. Specific software is mentioned in some places, but only if a technique is discussed that 
requires specific software features or is only available in a specific program. 
 
Since statistical software evolves rapidly, with new versions of the software coming out much 
faster than new editions of general handbooks such as this, we do not discuss software setups 
or output in detail. As a result, this book is more about the possibilities offered by the various 
techniques than about how these things can be done in a specific software package. The 
techniques are explained using analyses on small but realistic data sets, with examples of how 
the results could be presented and discussed. At the same time, if the analysis requires that the 
software used have some specific capacities, these are pointed out. This should enable 
interested readers to determine whether their software meets these requirements, and assist 
them in working out the software setups for their favorite package. 
 
In addition to the relevant program manuals, several software programs have been discussed in 
introductory articles. Using SAS Proc Mixed for multilevel and longitudinal data is discussed by 
Singer (1998). Peugh and Enders (2005) discuss SPSS Mixed using Singer’s examples. Both 
Arnold (1992), and Heck, Thomas and Tabata (2012, 2014) discuss multilevel modeling using 
SPSS. Sullivan, Dukes and Losina (1999) discuss HLM and SAS Proc Mixed. West, Welch and 
Galecki (2007) present a series of multilevel analyses using SAS, SPSS, R, Stata and HLM. 
Finally, the multilevel modeling program at the University of Bristol maintains a multilevel 
homepage that contains a series of software reviews. The homepage for this book contains links 
to these and other multilevel resources. 
 
The data sets used in the examples are described in appendix E, and are all available through the 
Internet. 
 


